RECORD OF DECISION

Prepared in accordance with the Connecticut Environmental Policy Act

Environmental Impact Evaluation
New Engineering and Science Building

University of Connecticut
Storrs, Connecticut

UNIVERSITY PROJECT #901376

Prepared for:

UNIVERSITY OF CONNECTICUT
Office of Environmental Policy
31 LeDoyt Road, U-3055
Storrs, CT 06269-3055

Prepared by:

GZA GEOENVIRONMENTAL, INC.
655 Winding Brook Drive, Suite 402
Glastonbury, CT 06033

JUNE 2014

Record of Decision
Environmental Impact Evaluation
New Engineering and Science Building
University of Connecticut
Storrs, Connecticut

Table of Contents

I. Decision ... 1
II. Statement of Environmental Impact ... 1
III. Summary of Consultation with Agencies and other Persons 1

Attachment A: Environmental Impact Evaluation (EIE), Executive Summary
(GZA GeoEnvironmental, Inc., April 2014)

Attachment B: EIE Public Review Period Notice and Advertisements with Affidavits

Attachment C: EIE Comment Letters, Public Hearing Transcripts and Responses to Comments

Attachment D: Public Hearing Presentation
I. DECISION

The University of Connecticut (the University) intends to continue with implementing the Proposed Action, which is construction of a New Engineering and Science Building (NESB) and associated perimeter site improvements at the University of Connecticut’s (the University’s) Storrs Campus. This decision is based upon the Environmental Impact Evaluation (EIE) (GZA GeoEnvironmental, Inc., April 2014) that was prepared for the Proposed Action and the comments received during the public review period for the EIE (April 22, 2014-June 6, 2014). A copy of the EIE’s Executive Summary is included as Attachment A.

II. STATEMENT OF ENVIRONMENTAL IMPACT

There will be no significant impacts to the environment as a result of the Proposed Action. All practicable means to avoid or minimize environmental harm have been adopted. The mitigation measures identified in the EIE and, where applicable, the responses to comments, have been adopted.

III. SUMMARY OF CONSULTATION WITH AGENCIES AND OTHER PERSONS

Consultation with various agencies and other persons was initiated as part of the public scoping process which began on January 21, 2014, with the publication of a Public Scoping Notice and Notice of Scoping Meeting in the Environmental Monitor as per CGS 22a-1b. The purpose of the notice was to inform and solicit comments from agency reviewers and other interested parties of the Proposed Action. A public scoping meeting was scheduled for February 5, 2014; however, it was cancelled due to inclement weather. A revised Scoping Notice was published in the March 3, 2014, Environmental Monitor, indicating a new public hearing date of March 17, 2014, and an extended comment period termination date of March 22, 2014. As a result, the public scoping comment period encompassed a total of 60 days, from January 21 to March 22, 2014.

Written scoping comments were provided during the scoping period. Written scoping comments were received by the following agencies: CT Department of Energy & Environmental Protection (DEEP), CT Department of Public Health (DPH), and the Town of Mansfield. A Public Scoping Meeting was held on Monday, March 17, 2014, at 7:00PM at the Merlin Bishop Center at the Storrs, CT campus. Written and oral comments were also received from the Meg Reich of the Willimantic River Alliance. Oral comments were received from Steven Squires, a resident of Mansfield.

After review of the scoping comments and a screening-level environmental analysis, it was determined that preparation of an EIE was warranted. The issues of concern that affected this decision were stormwater management and, to a lesser degree, water supply.

The following were provided with copies of the EIE:
A notice of availability for the EIE and notice for a public hearing was advertised in the *Environmental Monitor* on April 22, 2014, and was also advertised in the Willimantic Chronicle on April 23, April 30, and May 7 (see Attachment B). The public review and comment period closed on June 6, 2014. The EIE was available for inspection during the entire comment period at the Mansfield Public Library, the Mansfield Town Clerk’s Office, and on the Council on Environmental Quality (CEQ) website at http://www.ct.gov/ceq/lib/ceq/Final_EIE_NESB.pdf and the University’s website at http://www.envpolicy.uconn.edu/Final%20EIE%20NESB.pdf.

A Public Hearing was held for the Project on May 29, 2014, at 7:00PM in Room 146 of the Merlin Bishop Center at the Storrs, CT campus. Oral comments were received from Meg Reich, representing the Willimantic River Alliance, and Steven Squires. Written comments were submitted by the following parties and these comments and the public hearing transcripts are contained in Attachment C:

- Willimantic River Alliance
- Town of Mansfield
- DEEP
- DPH

Responses to all substantive comments are included in Attachment C, organized by comment date.
ATTACHMENT A

Environmental Impact Evaluation
Executive Summary
EXECUTIVE SUMMARY

Introduction

The Proposed Action is the construction of a New Engineering and Science Building (NESB) and associated perimeter site improvements at the University’s Storrs Campus. The NESB would be a 5-story structure encompassing approximately 118,000 square feet (SF) of space. Because the Proposed Action may significantly affect the environment in an adverse manner, and in consideration of the fact that the project involves more than 100,000 SF of new construction in an area that would have been considered a “Neighborhood Growth Area” under the 2005-2010 State Plan of Conservation and Development’s Locational Guide Map, this Environment Impact Evaluation (EIE) has been prepared pursuant to the requirements of the CEPA as promulgated under Section 22a-1 to 22a-1h of the Connecticut General Statutes (CGS) and as amended by Public Act 02-121.

Public Participation

A Public Scoping Notice was published on January 21, 2014 on the Council on Environmental Quality’s (CEQ) Environmental Monitor web page as per CGS 22a-1b. A public hearing was scheduled for February 5, however it was cancelled due to inclement weather. A revised Scoping Notice was published in the March 3, 2014 Environmental Monitor indicating the new Public Hearing date of March 17, 2014 and an extended comment period termination date of March 22, 2014. Therefore, the public scoping comment period encompassed a total of 60 days, from January 21 to March 22.

Written scoping comments were received by the following agencies: Connecticut Department of Energy & Environmental Protection (DEEP), Connecticut Department of Public Health (DPH), State Historic Preservation Office (SHPO) and the Town of Mansfield. A public scoping meeting was held on Monday, March 17, 2014 at 7:00 PM at the Merlin Bishop Center at the Storrs Campus. One person, Meg Reich, representing the Willimantic River Alliance provided comments. Oral and written scoping comments appear in Appendix A.

After review of the scoping comments and a screening-level environmental analysis, it was determined that preparation of an EIE is warranted. The particular issues of concern that affected this decision were stormwater management and, to a lesser degree, water supply availability and traffic/transportation.

Purpose and Need

The purpose of the Proposed Action is to satisfy existing and future needs of students enrolled in the Science, Technology, Engineering and Math (STEM) program at the University. Construction of a building for this program was identified in the 2006 Campus Master Plan. The Proposed Action would also provide for much needed “swing space” for
professors and students that may be temporarily displaced as a result of future STEM construction and renovation projects.

Project Description

The Proposed Action is the construction and operation of a New Engineering & Science Building (NESB) at the University of Connecticut Storrs Campus in Mansfield, CT. The NESB would be an engineering and interdisciplinary science lab building for bioengineering, computer simulation, chemical engineering and other sciences, designed to foster collaboration between the fields of research. The NESB would be an 118,000± square foot (SF), 5-story structure, with the majority of the space devoted to laboratories. This project would achieve the Leadership in Energy and Environmental Design’s (LEED®) Silver and High Performance Building Standards at a minimum.

The preferred Site for the NESB is the footprint of the existing Old Central Warehouse (OCW) located between Glenbrook Road and North Eagleville Road in the Research Neighborhood portion of the Storrs Campus (Figure ES-1).

The OCW has been slated for demolition in 2014 and is not an element of the Proposed Action. Regardless of whether or not the NESB is constructed at this site, the OCW will be demolished.

The University is proposing to complete construction of the NESB and associated perimeter site improvements in time for the Spring 2017 semester. The total project cost is a $91.3 million of which the estimated construction cost is $68 million. Funding for this project would come from UConn 2000, now known as Next Generation Connecticut (NextGenCT), pursuant to the provisions of CGS 10a-109 through 10a-109y most recently amended by Public Act 13-233.

The Proposed Action is expected to enable the University to hire more faculty within the STEM program. It is expected that an additional 182 students and 11 faculty/staff would be added to the University roster.
Legend
- Site Boundary
- NESB Building Footprint (approx)

Locus Map

New Engineering & Science Building
University of Connecticut
Glenbrook Rd.
Storrs, Connecticut

BASE MAP: Bing Maps 2014

Project Location information obtained from Mitchell Giurgola Architects, LLP

GZA GeoEnvironmental, Inc.
Springfield, MA / Glastonbury, CT

Drawn by: KDC
Checked by: PGD
Date: March 2014
Figure No: ES-1

Project No: 15.0166402.00
Alternatives

As required by CEPA, alternatives to the Proposed Action were considered. They included:

- Construction of new building between the Arthur B. Bronwell Building (Bronwell) and Engineering II (E2) buildings; and
- No Action

The environmental impacts of the preferred alternative and the E2/Bronwell alternative are similar. Both alternatives would not significantly change the amount of Impervious Cover (IC) cover in the Eagleville Brook watershed and both would require approximately the same amount of water for operation. Similar positive socioeconomic impacts would be provided by both alternatives.

The primary difference between these two alternatives is that the E2/Bronwell expansion would require demolition of two wings of the E2 building that currently consist of existing usable academic and research space. Therefore, the net increase in STEM related space on campus would not be as great as that of the preferred alternative which is to supplant existing storage space (the OCW) which has already been provided elsewhere on campus.

The No Action alternative does not meet the project goal of improving and expanding the STEM program at the University, therefore it was dismissed.

Existing Conditions

The Site of the Proposed Action is the footprint of the existing OCW and its perimeter which consists of paved walkways, lawn and a small parking area. The Site contains no wetlands or state-protected species. There are no open waterbodies in or near the site, although a piped segment of Eagleville Brook traverses under the Quad that borders the Site. The 100-year floodplain for Eagleville Brook is mapped on the Site according to Federal Emergency Management Agency (FEMA) mapping. However, it is clear that FEMA has not updated the mapping for this area because Eagleville Brook was piped underground before 1951 and FEMA did not properly modify its 1981 mapping effort.

Sensitive receptors near the Site include several educational buildings and the adjacent Student Health Services Building. University housing is not present or adjacent to the Site and all land contiguous to the Site is University-owned.

There are utilities available at the site and they include: water supply, sanitary sewer, electricity, heat, cooling, telecommunications and stormwater. Heating, cooling and electricity will be provided by the Central Utility Plant (CUP) which is adjacent to the Site.

The Site is within a Priority Funding Area (PFA) according to the State Plan of Conservation and Development’s Locational Guide Map (LGM).
Environmental Impacts and Mitigation

Public scoping comments were received from DEEP, DPH, the Town of Mansfield and the Willimantic River Alliance. The primary issues of concern raised by these entities were:

- Potential stormwater runoff impacts to Eagleville Brook, an impaired water with a Total Maximum Daily Loads (TMDLs) for Impervious Cover (IC) and bacteria; and,
- Capacity of the University’s water supply system to meet the water demands of the NESB.

Stormwater Runoff

The Proposed Action would result in a net decrease in IC compared to existing conditions. Approximately 3,000 SF of additional pervious surface in the form of lawn, gardens and tree plantings would be constructed where there are currently hard (impervious) surfaces. The Proposed Action is consistent with the TMDL goals of reducing IC within the Eagleville Brook watershed. Shallow groundwater at the site relative to the proposed depth of the NESB’s lowest level (which will be deeper than that of the OCW) necessitates that groundwater be diverted through a collection system. The intended discharge location for the collected groundwater is the storm sewer system that contributes to Eagleville Brook.

Before the Proposed Action is scheduled to be complete, the University will have also completed an updated Master Plan and a corresponding Environmental Impact Evaluation that will evaluate the broader changes to the campus environment, such as any significant stormwater mitigation. The area of the NESB will be reviewed for its cumulative impacts as well as for cumulative mitigation opportunities, including the conceptual stormwater management techniques such as bio-infiltration where possible, green roofs, permeable or porous pavements, cistern collection for landscape irrigation, and treatment.

Water Supply

The Site of the Proposed Action is currently serviced by the University’s water supply. The University’s 2011 Water Supply Plan (Milone & MacBroom, 2011a) indicated that new water supply sources would be required to maintain margins of safety and provide for supplemental supply to meet increased demands in conjunction with expected expansions. The University prepared an EIE and Record of Decision (ROD) (Milone and MacBroom, 2012 & 2013) for a more detailed study of alternatives to address future needs of the campus and surrounding areas of the Town of Mansfield. Interconnection with the Connecticut Water Company’s (CWC) water supply system was selected as the preferred alternative in the EIE. CWC is in the process of preparing a Diversion Permit for CT DEEP with the University as a co-applicant.

The average daily demand associated with the NESB is estimated to be 4,800 GPD, of which 1,600 GPD would be for new hires and additional enrollment enabled by the
Proposed Action. The Proposed Action would create a demand for approximately 182 new students and 11 new faculty/staff. Cumulative impacts, including those on water supply, of the entire NextGenCT program will be evaluated in a Master Pan EIE. However for the purpose of this NESB EIE’s evaluation of water supply impacts, consideration must be given to the two other projects that will be opening around the same time as NESB. The total average daily demand associated with NESB, the Innovation Partnership Building (expected to be complete by the end of 2016) and STEM Residence Hall (expected to be complete by August 2016) is 58,400 GPD.

The CWC interconnection is anticipated to come online by the end of the 2016 calendar year, in advance of the expected opening of the NESB in January 2017. The University's additional water supply needs will be met by augmenting its supply with water to be provided pursuant with its contract with the Connecticut Water Company (CWC).

In the case that the proposed NESB is completed prior to the additional water supply being available from CWC, mitigation would be required in order to meet the peak day demand, including a system-wide 15% margin of safety. Although the water demand for the NESB is small, it could marginally exacerbate the existing deficiency in the system relative to peak demand if water from the CWC interconnection was not available, as would demands for the STEM Residence Hall and Innovation Partnership Building.

Mitigation will consist of:

a) Connecting NESB will to the University’s reclaimed water utility. Deducing toilet flushing from the average day demand reduces the buildings average daily demand for potable water from 4,800 GPD to 2800 GPD and the net new demand from 1,600 GPD to 920 GPD;

b) Continuing to promote water conservation throughout the system; and,

c) Taking steps including securing appropriate regulatory approvals to ensure that peak day margin of safety could be demonstrated by having Fenton Well D approved for use during the time that peak demand is expected.

Traffic/Transportation

There would be a slight increase in traffic and parking as a result of the Proposed Action. NESB will also include space that will enable new hires and some increased enrollment. Those new hires and additional enrollment would be considered as potential additional trips to campus.

The increase in the number of vehicles on the local roadway network is estimated to be approximately 332. During the peak traffic hours, vehicles entering and leaving the campus daily will increase by approximately 30 vehicles during the AM peak hour and 27 vehicles during the PM peak hour.
Relative to the conditions reviewed by in the most recent traffic analysis performed by the University as part of the Innovation Partnership Building, the percentage of potential trips associated with the Proposed Action increases the volume at key intersection by 1-3% or which can be considered minor, especially because the existing intersections operate overall at very good levels of service (i.e. very little congestion).

Nevertheless there will be a nominal increase in passenger vehicle traffic and in the demand for parking spaces on-campus associated with the Proposed Action. Impacts will have to be adequately quantified, especially to support the requisite approval from OSTA. Cumulative impacts, including those on traffic and parking, of the entire NextGenCT program will be evaluated in a Master Plan EIE.

The impacts of increased parking demand and traffic can be mitigated through various means. The preferred means of mitigation would be to: broadly promoting ride-share/carpooling programs community-wide to dampen demand; increase public transportation options locally through the on-campus bus and shuttle services and regionally through partnerships with other transit authorities; price residential parking permits to discourage demand; ensure that adhering to lawful parking on and off-campus can be properly enforced.

In the event that the preferred means of mitigation for the overall Master Plan do not adequately address the traffic and parking impacts, major roadway improvements and new structured/surface parking would potentially be needed. Before the Proposed Action is scheduled to be complete, the University will have also completed an updated Master Plan and a corresponding Environmental Impact Evaluation that will evaluate the broader changes to the campus environment, such as any significant parking or traffic mitigation.

As required by CEPA, other potential impacts to the physical, socioeconomic and natural environment were also evaluated, commensurate with the level of expected impact and the degree to which they were raised as potential issues during the scoping process. Table ES-1 summarizes the environmental impacts of the Proposed Action and any mitigation measures that may be needed to minimize or avoid such impacts.

As shown, none of the environmental impacts associated with the Proposed Action would be significant. The University recognizes that the impact of the Proposed Action, combined with other planned projects as part of the NextGenCT program, and the STEM-related projects in particular, need to be addressed in a more comprehensive manner. The University’s Master Plan Update, which is on-going, will be the subject of an EIE that addresses these cumulative impacts.
<table>
<thead>
<tr>
<th>Environmental Element</th>
<th>Impacts</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate, Topography, Geology & Soils</td>
<td>Disturbance of fill soils, minor grading required</td>
<td>Installation of erosion control measures as required by Construction General Permit</td>
</tr>
<tr>
<td>Surface and Groundwater</td>
<td>Reduction of 3,000 SF of Impervious Cover</td>
<td>Not warranted. Net positive impact.</td>
</tr>
<tr>
<td></td>
<td>Direct discharge of groundwater to Eagleville Brook</td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>No wetlands on or near Site.</td>
<td>Not warranted</td>
</tr>
<tr>
<td>Floodplains</td>
<td>Technically within 100-year floodplain but Eagleville Brook piped underground.</td>
<td>Not warranted but DEEP Flood Management Certification required.</td>
</tr>
<tr>
<td>Flora and Fauna</td>
<td>No significant impact. Area densely developed.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>State Protected Species</td>
<td>None at or near site per DEEP.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>No direct significant impact. Tie into existing CUP. Insignificant increase in emissions from new emergency generator for Student Health Services Building.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td></td>
<td>Student Health Services Building emergency generator to be replaced with a larger emission source.</td>
<td>Generator to be Tier 4 compliant</td>
</tr>
<tr>
<td>Noise & Vibration</td>
<td>Temporary increase in noise and vibration during construction.</td>
<td>Prohibit blasting.</td>
</tr>
<tr>
<td>Light/Shadow</td>
<td>Slight increase in shadow and lighting demand in Quad.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Traffic and Transportation</td>
<td>Nominal increase in parking demand traffic generation.</td>
<td>Broadly promote ride-share/carpooling; Increase public transportation options; Price residential parking permits to discourage demand; Ensuring that adhering to lawful parking on and off-campus can be properly enforced.</td>
</tr>
<tr>
<td>Water Supply</td>
<td>Approximately 1,600 GPD in additional demand.</td>
<td>Reclaimed water will be used for NESB toilets to reduce the stated GPD. Reduction of 680± GPD expected for net demand increase of 920±. Continue to promote water conservation and obtain approvals to use Fenton Well D even during low stream flow as proposed in the 2011 Water Supply Plan in order to mitigate peak day demand conflicts in the event the CWC water not yet available at the time NESB is complete.</td>
</tr>
<tr>
<td>Environmental Element</td>
<td>Impacts</td>
<td>Mitigation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Stormwater</td>
<td>Approximately 3,000 SF less of impervious area compared to existing</td>
<td>Not warranted. Positive impact.</td>
</tr>
<tr>
<td></td>
<td>Direct discharge of groundwater to Eagleville Brook</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>Utilities present at or near site.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Solid & Hazardous Waste</td>
<td>Additional solid waste and some hazardous waste generated.</td>
<td>Managed in accordance with current University practices.</td>
</tr>
<tr>
<td>Public Health & Safety</td>
<td>No significant change in emergency service needs.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>Improved aesthetic of Quad area and removal of dated OCW.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No cultural resources affected. Site is disturbed.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>Positive economic benefit.</td>
<td>Not warranted.</td>
</tr>
<tr>
<td>Consistency with Plans</td>
<td>Proposed land use is consistent with State Plan of Conservation & Development. Project identified in University 2006 Master Plan.</td>
<td>Not warranted.</td>
</tr>
</tbody>
</table>
ATTACHMENT B

EIE Public Review Period Notices and Advertisements
Environmental Impact Evaluation: UCONN Science, Technology, Engineering and Math (STEM) Residence Hall

A public hearing will be held on this EIE on:

DATE: **May 29, 2014**

TIME: 7:30 p.m., or immediately upon the close of the new Engineering Science Building's EIE public hearing, whichever is later.

PLACE: Room 146, UConn Bishop Center; One Bishop Circle; Storrs, CT

NOTES: Doors will be open at 6:00 p.m. to allow review of informational materials.

Written comments should be sent to:

Name: Paul Ferri
Agency: University of Connecticut – Office of Environmental Policy
Address: 31 LeDoyt Road, U-3055, Storrs, Connecticut 06269
Phone: 860-486-9295
Fax: 860-486-5477
Email: paul.ferri@uconn.edu

If you have questions about the public hearing, or other questions about the EIE, contact Mr. Ferri as directed above.

2. Notice of EIE for New Engineering & Science Building, University of Connecticut, Storrs

Municipality where project is proposed: Mansfield

Address of Possible Project Location: Genbrook Rd. at University of Connecticut, Storrs Campus

Project Description: The University of Connecticut is seeking to build a New Engineering & Science Building off Genbrook Road at the Storrs Campus. This five-story, 118,000 GSF building is proposed to be located between the Chemistry Building and the Psychology/Biology Building, partially within the footprint of the old Central Warehouse, which will be demolished. The New Engineering & Science Building will serve the university staff and students, offering new laboratories and offices, classrooms, and meeting rooms. New construction associated with this project will incorporate best practices of sustainability with a minimum goal of LEED Silver and conformance with High Performance Building standards.

The University has prepared an Environmental Impact Evaluation (EIE) to further evaluate the potential environmental impacts of the Proposed Action, as well as other alternative sites considered, including the No Action alternative.

Project Map: [Click here](#) to view a map of the project area.

Comments on this EIE will be accepted until the close of business on: **Friday, June 6, 2014**

The public can view a copy of this EIE at:

- Mansfield Town Clerk's Office, Audrey P Beck Municipal Building, 4 South Eagleville Road, Mansfield, CT
- Mansfield Public Library, 54 Warrenville Road, Mansfield, CT

The EIE can also be viewed online by clicking on the link below:
[Environmental Impact Evaluation: UConn Science and Engineering Building](#)

Written comments: from the public are welcomed and will be accepted until the end of June 6 2014.

There will be a Public Hearing for this project at:

Date: **May 29, 2014**

Time: 7:00 PM

Place: Room 146, UConn Bishop Center; One Bishop Circle; Storrs, CT 06269

Notes: Doors will be open at 6:00 p.m. to allow review of informational materials.

Written comments should be sent to:

Name: Jason Coite
Agency: UConn - Office of Environmental Policy
Address: 31 LeDoyt Road, U-3055; Storrs, CT 06269
Fax: 860-486-5477
E-Mail: jason.coite@uconn.edu

If you have questions about the Environmental Impact Evaluation, please contact Mr. Coite as directed above.

State Land Transfer Notices

Connecticut General Statutes Section 4b-47 requires public notice of most proposed sales and transfers of state-owned lands. The public has an opportunity to comment on any such proposed transfer. Each notice includes an address where comments should be sent. [Read more about the five-step process](#).
The 2014 NCAA Division I baseball championship is being held at the University of Connecticut in Storrs, CT. The last time the Huskies participated in the NCAA baseball tournament was in 1981.

The University of Connecticut baseball team will host Stony Brook University and Army on Tuesday, May 13, 2014, in the first round of the NCAA baseball tournament. The Huskies and Stony Brook will play at 6 p.m., followed by Army and Stony Brook at 8:30 p.m.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.

The University of Connecticut baseball team is under the guidance of head coach Jim Penders, who is in his 11th season with the Huskies. The Huskies have a record of 19-30-1 this season and are ranked 22nd in the latest NCAA baseball poll.

Stony Brook University is under the guidance of head coach Jim Penders, who is in his 22nd season with the Bears. The Bears have a record of 31-15-1 this season and are ranked 12th in the latest NCAA baseball poll.

The University of Connecticut baseball team is the defending champion of the Big East Conference and has won the conference title in each of the past five seasons. Stony Brook University is the defending champion of the America East Conference and has won the conference title in each of the past three seasons.

The winner of the first round games will advance to the second round, which will be held on Tuesday, May 20, 2014, at the University of Connecticut in Storrs, CT.

The winner of the second round games will advance to the regional round, which will be held on Saturday, May 24, 2014, at the University of Connecticut in Storrs, CT.

The winner of the regional round will advance to the super regional round, which will be held on Tuesday, May 27, 2014, at the University of Connecticut in Storrs, CT.

The winner of the super regional round will advance to the College World Series, which will be held on Thursday, June 5, 2014, at the University of Nebraska in Lincoln, NE.

The winner of the College World Series will be the national champion of the NCAA Division I baseball championship.
ATTACHMENT C

Environmental Impact Evaluation
Comments and Responses
May 28, 2014

Mr. Jason Coite
UConn Office of Environmental Policy
31 LeDoyt Road, U-3055
Storrs, Connecticut 06269

Subject: Engineering and Science Building Environmental Impact Evaluation (EIE)

Dear Mr. Coite:

The Mansfield Town Council and Planning and Zoning Commission (PZC) offer the following recommendations with regard to the proposed Engineering and Science Building. These comments should be considered in addition to our March 19, 2014 comments provided in response to the scoping process.

- Traffic and Transportation. We strongly encourage the University to implement the mitigation measures identified in the report prior to opening the building. Transportation Demand Management, expansion of public transportation options and decreasing resident students demand for cars can all serve to mitigate traffic as the University expands. Additionally, the University should periodically evaluate and reassess the effectiveness of these approaches and provide the Town with a report detailing the results.

Given the extent of future expansion contemplated by NextGenCT, we restate our request that the campus-wide master plan currently being prepared include a comprehensive, multi-modal transportation plan for the build-out of the campus that considers impacts to the local transportation network, including off-campus improvements for vehicular, pedestrian, bike and transit circulation. Transportation initiatives should be designed to integrate with the Nash Zimmer Transportation Center at Storrs Center. This facility currently provides a central location for students, faculty and town residents to access University, WRTD and Peter Pan bus services. As noted above with regard to the mitigation measures proposed for this project, the transportation plan should also include performance measures and a framework for reporting and modifying approaches as needed.

With regard to enforcement of off-campus parking, the Town has three primary programs that it is actively implementing.

- Residential Parking. As part of the Town’s rental certification program, owners of structures containing up to 3 rental units are required to prepare and implement a parking plan for both resident and guest parking. Compliance is monitored by the Department of Building...
and Housing Inspection.

- **On-Street Parking.** On street parking is monitored and enforced by Central Parking and the Resident Trooper in Storrs Center and by the Resident Trooper in other areas.

- **Commercial Parking.** As part of Storrs Center, the Town has created a parking collaborative that provides for enforcement of time limitations on both public and private property. Under this new collaborative, private lot owners have the ability to ticket vehicles in addition to having vehicles towed.

Lastly, it is imperative that the University instruct its construction contractors to use state roads, not local roads, to access the site to minimize the potential for disturbance in neighborhoods adjacent to campus.

- **Water Supply.** As the University is well aware, Mansfield has long been concerned with the impact of the Fenton River wellfield on the river and particularly since the events of 2005. We understand that the reference to using Well D intermittently is said in order to demonstrate that the University can meet Margin of Safety requirements on peak demand days and that actual use of Well D would not be needed unless the University’s stored water supplies were unavailable. However, should the well need to be put into production during drought conditions, our concerns regarding impacts to streamflow remain. Accordingly, we offer the following comments:

 - If the Connecticut Water Company interconnection has not been completed prior to the opening of this building, any use of Well D should be only with prior approval by CT DEEP. The University should provide DEEP with detailed operational plans that include ceasing use of the well if impacts to streamflow are identified during drought periods and the planned restrictions on water usage that would be implemented if well production was ceased.

 - Streamflow monitoring stations should be installed in appropriate locations to ensure that use of Well D does not negatively impact streamflow. DEEP should be actively involved in monitoring streamflow when the well is in use during drought periods.

 - The University should continue to promote water conservation through mandatory water usage restrictions during droughts, make improvements to facilities to reduce water consumption, connect additional buildings to the Reclaimed Water Facility and make operational changes.

- **Stormwater.** While the site is located within the Eagleville Brook watershed, we understand that site conditions make use of stormwater management techniques such as rain gardens difficult in this area. However, the University does have the opportunity to reduce effective impervious cover and stormwater runoff through the installation of a green roof on this new building. As such, we urge you to consider this option as part of the building design.

Additionally, given the importance of this issue, the University should prepare a stormwater master plan as part of the campus-wide master planning effort. The plan should emphasize the use of Low Impact Development (LID) stormwater management practices and reductions to effective impervious cover. These approaches should be used throughout campus and not only within the Eagleville Brook watershed.
- **Lighting.** All new lighting installed as part of this project should be Dark Sky compliant with full shield cutoffs to reduce light pollution.

- **Factual Corrections.** The following sections of the EIE should be corrected to reflect current conditions:
 - Section 3.2.4-Stormwater. Correct second to last sentence of first paragraph under Existing Conditions to remove reference to Dairy Mart and specify property address as the location instead of business names as businesses change over time.
 - Section 3.2.8-Public Health and Safety. Replace the language in the third paragraph related to Mansfield fire services with the paragraph contained in the EIE for the STEM Residence Hall. The information contained in this document is outdated and incorrect; Mansfield no longer has three separate volunteer fire departments.

If you have any questions regarding these comments, please contact Linda Painter, Director of Planning and Development.

Sincerely,

Elizabeth C. Paterson
Mayor

JoAnn Goodwin
Chair, Mansfield PZC

Cc: Town Council
 Planning and Zoning Commission
 Conservation Commission
May 29, 2014

To: Jason Coite, UCONN Office of Environmental Policy, Storrs, CT

From: Meg Reich, President, Willimantic River Alliance

Subject: Comments on EIE for New Engineering and Science Building (NESB), April 2014

The Willimantic River Alliance (WRA) is concerned that plans for the proposed New Engineering and Science Building (NESB), as described in the Environmental Impact Evaluation (EIE), do not currently include adequate measures for preventing further degradation to Eagleville Brook, the impaired water body that flows from the UCONN campus in Storrs to the Willimantic River.

The EIE for the NESB states that no new surface or groundwater improvements or actions are proposed, since no mitigation measures are warranted. The current infrastructure of catch basins and yard drains are proposed to be used for this new building, directing stormwater runoff to be piped directly into Eagleville Brook, which flows through a large underground culvert beneath the site. Indeed, all the buildings around this quadrangle and in this section of campus dispose of roof runoff and stormwater runoff from paved surfaces in this manner. These do not adequately filter the dirt, sand, salt, oil, grease or urban debris washed off of the impervious cover of the paved portions of campus; the grime of the urban campus is piped directly into the brook. This impervious cover (IC) is why Eagleville Brook has impaired water quality, cannot support aquatic life, and is the subject of a TMDL (Total Maximum Daily Load) calculation and a watershed management plan.

The NESB EIE Executive Summary says that before the building is scheduled to be complete, the University’s Master Plan & EIE will have been completed and that this project will be reviewed for its impacts and mitigation opportunities for ‘conceptual’ stormwater management techniques such as bio-infiltration, green roofs, permeable or porous pavements, cistern collection and treatment. That will be too little and too late. Stormwater planning needs to be done now, as soon as possible, particularly since the Design Team says that opportunities for infiltration could be limited in this area.

The current campus stormwater management plan has not yet been updated to include the NESB and other new STEM program buildings being planned. The campus master plan is currently being updated and the consultants acknowledge that stormwater management is one of the ‘challenges’ to future campus development. New building projects on the Storrs Campus are on hold until these plans are completed, then one EIE for all new buildings is envisioned to be submitted, instead of preparing an EIE for each new major structure. The NESB and the new STEM Residence Hall projects, however, are going forward in advance of the completed master plan, since they are critical to accommodate the anticipated additional STEM students and faculty.
WRA does acknowledge that previous campus plans have envisioned such uses at the locations now under consideration, and the need to expedite these two buildings, in advance of the campus master plan being completed, may be warranted.

The EIE for the STEM Residence Hall, however, includes stormwater and Low Impact Development (LID) improvements while the EIE for the NESB states that no surface or groundwater mitigation measures are warranted, and that stormwater management plans and LID actions for this building be developed after the campus master and stormwater management plans are completed.

The Willimantic River Alliance disagrees with the NESB EIE, and recommends that the stormwater runoff management plans for the NESB site and adjacent areas be expedited so that stormwater and LID Best Management Practices (BMP) can be included in the pre-construction plans for the NESB. Plans for the new pedestrian quadrangle also need to be developed at the same time, since it will undoubtedly host the measures for the NESB, as well as the retrofits needed to disconnect runoff from the adjacent Chemistry, Pathobiology and Pharmacy buildings around the planned ‘new’ pedestrian quadrangle. While the renovation of the quadrangle is not be a part of this NESB project, consideration needs to be given and preliminary plans made to place stormwater management improvements in and under the quadrangle space in the future, not only for the NESB building, but for the other buildings around the quadrangle.

It is no longer appropriate to direct unfiltered hot dirty urban stormwater runoff from this, the most intensely developed section of the campus, to the virtually unfiltered catch basins and yard drains of the existing eroding quadrangle.

The University has planned for and constructed a number of LID projects throughout the campus, which serve to disconnect and/or filter the stormwater runoff from the buildings and pavement before it enters the natural streams which drain water from the campus to the Willimantic and Fenton Rivers. Some of these projects are quite a distance from Eagleville Brook. The NESB project site is directly above this brook, which is channeled in an underground culvert. Measures put in place on this site will have more direct impact on improving the water quality of the brook, need to be planned now, and cannot wait for the update of the other plans.

WRA recommends that the stormwater plans for this section of the campus be expedited, in order to go forward with the NESB project. At a minimum, raised and filtered catch basins need to replace the existing infrastructure for the entire NESB site. If not, then the NESB project should be put on hold until the campus plans are all completed, just like the other projects on campus. The appropriate stormwater and LID projects can then be planned and financed to accommodate this new building in the more distant future.

The University has adopted a Sustainable Design & Construction Policy, LEED standards, guidelines for sustainable design and low impact development goals. These need to be fully applied to the stormwater runoff ‘challenges’ of the NESB site, the adjacent ‘new’ pedestrian quadrangle, and to retrofit the stormwater runoff from buildings surrounding the quadrangle which contribute to the degradation of water quality in Eagleville Brook and thus the Willimantic River.

Feel free to contact me at 860-455-0532 with any questions
To: Jason Coite - Environmental Compliance Analyst
UConn - Office of Environmental Policy, 31 LeDoyt Road, U-3055, Storrs, CT
From: David J. Fox - Senior Environmental Analyst
Telephone: 860-424-4111
Date: June 6, 2014
E-Mail: david.fox@ct.gov
Subject: Engineering & Science Building

The Department of Energy & Environmental Protection (DEEP) has reviewed the Environmental Impact Evaluation for the proposed construction of a New Engineering and Science Building (NESB) on Glenbrook Road on the Storrs campus. The following commentary is submitted for your consideration.

In our comments on the STEM dormitory, the Department expressed concerns over the University’s ability to reliably provide water supply to meet the increased demand of that project, in conjunction with this new building and the Innovative Partnership Building, without the proposed interconnection with the Connecticut Water Company. Because this project is not anticipated to be operational until 2017 and its water usage is by far the smallest of the three projects, water supply does not appear to be as serious a concern for this EIE.

As discussed in the EIE, the site is mapped as a 100-year flood zone on the Flood Insurance Rate Map despite the undergrounding of Eagleville Brook sometime prior to 1951. The application for Flood Management Certification should include a demonstration that the underground 48” pipe has the capacity to convey the 100-year flood flow. In addition, groundwater is proposed to be directed away from the proposed building’s foundation and discharged to the stormwater system, which flows into the piped brook. The application should also demonstrate that the pipe has the capacity to convey this additional flow, which is judged to be nominal in the document, during the 100-year event.

The EIE calculated that redevelopment of the site of the former warehouse would result in a net loss of 3000 sq.ft. of impervious surface and explains that potential LID opportunities may be included in stormwater design to meet LEED requirements. The project site will reportedly be reviewed for cumulative mitigation measures as part of the upcoming Master Plan CEPA process. The Department suggests that reconsideration be given to including LID techniques as integral components of the building design, as opposed to subsequent retrofitting. As noted in our scoping comments, having construction equipment on-site for the building would, at a minimum, eliminate mobilization costs for installing LID measures. Incorporating LID techniques during project design would also allow a wider range of options to be considered. DEEP recommends reconsideration of the stormwater management system during final design of the NESB, to include review of a fuller suite of stormwater practices including infiltration, bioretention, evapo-transpiration, extended detention, and rainwater harvesting and reuse.
options. If the University demonstrates the inability to incorporate such suite of practices into this project, then this should be addressed in the University’s Master Planning EIE.

The TMDL for Eagleville Brook (2007) investigated a number of potential causes for the documented degradation of downstream aquatic habitat, low fish abundance and lack of sensitive benthic stream invertebrate taxa that resulted in a non supporting assessment of aquatic life for the mid and lower waterbody segments of Eagleville Brook. There is ample data to support the theory that impervious cover with a watershed alters the natural stream hydrograph, resulting in decreased groundwater recharge. That recharge is predominately responsible for the baseflow conditions of the receiving surface water streams. The complex relationship of groundwater recharge and surface stream flow is compounded by increases of impervious surface area, as has occurred in recent decades on the University campus. By relying on quickly shunting rainfall and snow melt runoff directly into a receiving stream, as is proposed by the NESB project, the groundwater recharge functions are bypassed, to the detriment of the natural stream hydrograph (and the downstream aquatic organisms dependant on that stream flow regime).

The Eagleville Brook Watershed Team, which includes representatives of several University departments and programs, DEEP and the Town of Mansfield, has reviewed the TMDL for Eagleville Brook and subsequent response documents (2010 and 2011). The Team is pursuing approvable project proposals to implement several of the “top ten” stormwater retrofit and low impact development priority site recommendations. Over the last several years the University has accomplished a number of related retrofits and incorporation of LID measures across several new and redeveloped sites on the main campus. The education and outreach has expanded well beyond the University campus footprint, and a diverse audience of students, land use commissioners, designers, engineers and community planners have visited these installations, in person or through the virtual LID campus tour developed by the University’s Natural Resources Academy students in 2013. The local community and watershed stakeholders are closely tracking the University actions to further implement the Eagleville Brook Impervious Cover TMDL and are expecting that some of the original “top ten” priority recommended actions will be implemented soon. This is especially true for (re)development projects with stormwater management needs that are in close proximity to the Eagleville Brook corridor. This EIE states the initial recommendation of a bioretention installation on a portion of this NESB site will be deferred until a new Master Plan EIE is completed. DEEP, as a member of the Eagleville Brook Watershed Team, recommends the University incorporate some practical LID design elements and stormwater management treatment during the construction phase of this project, and not defer such action until a later date.

DEEP further recommends the University continue to report on Eagleville Brook Impervious Cover TMDL implementation activities, as an element of tracking changes in impervious surface areas and their connections to the Eagleville Brook drainage system, through the CLEAR program.

The EIE states that the additional laboratory wastewater streams will be managed in accordance with existing University protocols, which include compliance the DEEP General Permit for Miscellaneous Discharges of Sewer Compatible Wastewater (MISC). If the flow of wastewater from the laboratories is less than 1,000 gpd, the facility would not have to be registered under the MISC General Permit. Registration will be required if the flow equals or is greater than 1,000 gpd.
The new building will be equipped with a diesel fueled emergency generator to replace the
old smaller unit at the adjacent Student Health Services Building that will be displaced by
construction. Based on the recent information submitted by Mr. Mark Bolduc, Environmental
Compliance Analyst from UCONN, the emergency engine for the new engineering and science
building will operate under Regulations of Connecticut State Agencies (RCSA) §22a-174-3b(e),
“Permit by rule.”

In discussing mitigation of air quality impacts, the document lists retrofitting non-road
construction equipment, complying with existing regulations regarding exhaust and the idling
regulation. As noted in our scoping comments, the Department typically encourages the use of
newer off-road construction equipment that meets the latest EPA or California Air Resources
Board (CARB) standards. If that newer equipment cannot be used, equipment with the best
available controls on diesel emissions including retrofitting with diesel oxidation catalysts or
particulate filters in addition to the use of ultra-low sulfur fuel would be the second choice that
can be effective in reducing exhaust emissions. The use of newer equipment that meets EPA
standards would obviate the need for retrofits.

The Department also encourages the use of newer on-road vehicles that meet either the
latest EPA or California Air Resources Board (CARB) standards for construction projects.
These on-road vehicles include dump trucks, fuel delivery trucks and other vehicles typically
found at construction sites. On-road vehicles older than the 2007-model year typically should be
retrofitted with diesel oxidation catalysts or diesel particulate filters for projects. Again, the use
of newer vehicles that meet EPA standards would eliminate the need for retrofits.

Additionally, Section 22a-174-18(b)(3)(C) of the RCSA limits the idling of mobile sources
to 3 minutes. This regulation applies to most vehicles such as trucks and other diesel engine-
powered vehicles commonly used on construction sites. Adhering to the regulation will reduce
unnecessary idling at truck staging zones, delivery or truck dumping areas and further reduce on-
road and construction equipment emissions. Use of posted signs indicating the three-minute
idling limit is recommended. It should be noted that only DEEP can enforce Section 22a-174-
18(b)(3)(C) of the RCSA. Therefore, it is recommended that the project sponsor include
language similar to the anti-idling regulations in the contract specifications for construction in
order to allow them to enforce idling restrictions at the project site without the involvement of
the Department.

Thank you for the opportunity to review this proposal. If there are any questions
concerning these comments, please contact me.

cc: Jeff Caiola, DEEP/IWRD
Corinne Fitting, DEEP/WPSD
Robert Hannon, DEEP/OPPD
Lidia Howard, DEEP/AEED
Rob Hust, DEEP/WPSD
Nisha Patel, DEEP/WPED
Ellen Pierce, DEEP/APSD
Peter Ploch, DEEP/WPED
Eric Thomas, DEEP/WPSD
June 6, 2014

Jason Coite
UCONN—Office of Environmental Policy
31 LeDoyt Road, U-3055
Storrs, CT 06269

Re: Notice of Environmental Impact Evaluation (EIE) for the New Engineering and Science Building at the University of Connecticut

Dear Mr. Coite:

The Department of Public Health (DPH) Drinking Water Section (DWS) has reviewed the above Notice for the New Engineering and Science Building at the University of Connecticut, proposed to be located off of Glenbrook Road at the Storrs Campus. The new building will be a five-story, 108,000 gross square foot structure with a full basement and penthouse. The New Engineering and Science Building will serve the university staff and students, offering new laboratories and offices, classrooms, and meeting rooms. The New Engineering and Science Building is anticipated to tie into central utilities for all electrical, heating, and cooling needs. The DWS understands that the New Engineering and Science Building was originally planned to be built as a part of the UCONN 2000 initiative and it will also be receiving partial funding through Next Generation Connecticut (NextGenCT).

Based upon the information provided at the Public Scoping meeting held in March, UCONN is currently developing a Master Plan for NextGenCT that will be publicly vetted through the Connecticut Environmental Policy Act process of Scoping and Environmental Impact Evaluation development. However, UCONN anticipates the need for this building prior to completion of the Master Plan; therefore it is being noticed separately from the Master Plan.

The DWS offers the following comments for your consideration:

- The New Engineering and Science Building will not be located within a public water supply source water area; therefore the DWS has no source protection related comments to offer.
- As noted in the EIE, the timing of activation of the interconnection with the Connecticut Water Company (CWC) is critical to ensure an adequate supply of drinking water with a margin of safety during peak use periods. The DWS understands that CWC is currently on track to meet its schedule and is currently going through the environmental permitting
process for numerous aspects of the interconnection. UCONN is encouraged to continue to coordinate with CWC on scheduling of the implementation of this interconnection.

- If CWC’s progress is stalled and the interconnection is not available for use prior to the opening of the New Engineering and Science Building along with the Innovative Partnership Building (IPB) and the Science, Technology, Engineering and Math (STEM) Residence Hall, UCONN has proposed mitigation measures meant to accommodate maximum day demands. UCONN should provide additional documentation that demonstrates that these mitigation measures will achieve the goal of reliably meeting maximum day demands with the margin of safety as noted by the EIE. Specifically:

 - UCONN should provide details of its efforts to date be able to use of Fenton Well D during low stream flow periods and the action items remaining. A schedule for achieving the action items and an estimate of the anticipated quantity of water that will be available under this scenario should be provided.
 - The EIE indicates that UCONN may be able to meet maximum day demands by drawing “modestly” on its storage capacity. UCONN should quantify what is meant by “modestly” and indicate how this modest withdrawal will be replaced during low stream flow, high demand periods.
 - In the DWS scoping comments, it was requested that the EIE explore the feasibility of using reclaimed water from the Reclaimed Water Facility for non-potable uses. The EIE indicates that reclaimed water will be used for toilet flushing at the New Engineering and Science Building, the IPB and the STEM Residence Hall; however the feasibility remains to be quantified. The DWS is concerned that peak use of reclaimed water for the Central Utility Plant could coincide with low sanitary sewerage flows, limiting the amount waste water available for reclamation and distribution. UCONN should provide estimates that indicate that the anticipated reclaimed water demand in the New Engineering and Science Building, the IPB and the STEM Residence Hall can be met year-round and especially under the noted scenario.

If you have any questions regarding these comments, you may contact me at (860)509-7333.

Sincerely,

[Signature]

Lori Mathieu
Public Health Section Chief
Drinking Water Section

Cc: Robert Miller, Eastern Highlands Health District
 David Radka, Connecticut Water Company
 Mandy Smith, DWS
UNIVERSITY OF CONNECTICUT

One Bishop Circle
Storrs, Connecticut

* * * * * * * * * * * * * * * * * * *

Public Hearing * May 29, 2014

Environmental Impact Evaluation *

New Engineering & Science Building *

* * * * * * * * * * * * * * * * * * *

Presented By: Stephen Lecco, A.I.C.P., C.E.P. - GZA

- and -

Jason Coite, Environmental Compliance Manager, UConn
MR. COITE: Good evening, ladies and gentlemen. Thank you for coming tonight.

My name is Jason Coite. I'm the Environmental Compliance Manager for the University of Connecticut.

Tonight we will be holding two public hearings. One for each of the Environmental Impact Evaluations we've recently published for two UConn projects. The first being the New Engineering and Science Building and the second being the Science, Technology, Engineering and Math, otherwise known as STEM, Residence Hall.

Tonight we will lead off with the Science Building. Steve Lecco from GZA will lead a brief presentation giving an overview of the project and the findings of the EIE.

We will then open the floor to public comments. Tonight's hearing is being transcribed, so we
will have a transcription available for the final record of decision.

Like we did for the scoping meetings, we will hold this officially as two separate hearings. We will close the Science Building hearing, have a brief recess, and then reopen and open the hearing on the Residence Hall.

With that, I'll let Steve Lecco present his presentation.

Thank you.

MR. LECCO: Thank you, Jason.

Thank you, everyone, for coming.

I'm going to give a brief presentation, as Jason stated. First of all I'm going to go over the purpose of the project and talk a little bit about the CEPA process. CEPA stands for Connecticut Environmental Policy Act.

Then I'll do a brief description of the project, it's highlights, talk about alternatives to the preferred alternative, and finally briefly summarize the impacts associated with the proposed project. And following that we'll solicit comments.

The proposed location for the new Engineering and Science building is in the Research
And this project triggers the CEPA process in general statutes for CEPA and implementing regulations as well. Connecticut Environmental Policy Act. There are What is CEPA? CEPA stands for the Master Plan. which was determined to be deficient during the 2006 Neighborhood portion of the campus between Glenbrook Road and North Eagleville Road. It's to be located where the old central warehouse currently exists, and that's being slated for demolition soon. The warehouse is not part of this project. It's going to be demolished regardless whether this new Engineering and Science building is constructed.

The purpose of the project is to -- is basically one of the first projects in the Next Generation Program, which will guide the University over the next decade. And particularly the Next Generation Program focuses on science, technology, engineering and mathematics, otherwise known as STEM, because that's where research has shown that there is a need in the educational system.

Ultimately the University would like to attract new faculty and new students. And this project also serves to provide much needed laboratory space, which was determined to be deficient during the 2006 Master Plan.

What is CEPA? CEPA stands for the Connecticut Environmental Policy Act. There are statutes for CEPA and implementing regulations as well. And this project triggers the CEPA process in general
because it's greater than 100,000 square feet of space in what's formally known as a Neighborhood Growth Area, according to the State Conservation and Development Plan. That plan has been updated and is sort of in flux now. There will be new thresholds developed in the future, so we've defaulted back to the old thresholds for CEPA.

CEPA requires State and Federal Agency involvement, and it also involves public -- the public as well.

This is a flowchart showing the CEPA process.

As I mentioned, there's a State action that triggers the CEPA threshold. That's the 100,000 square feet of development.

Then there's a Public Scoping element. We had a Public Scoping Meeting right here on March 17th. The comment period for that Scoping Process was from January through March 22, 2014. We received scoping comments from DEP, Department of Public Health, Willimantic River Alliance and the Town. Based on those comments and based on our own research we identified the key issues that were needed to be addressed in the Environmental Impact Evaluation. We conducted an
alternatives analysis, evaluated the impacts of the preferred alternative, as well as other alternatives, and produced the Environmental Impact Evaluation, which is the subject of tonight's meeting.

Tonight we're holding this public hearing, which comes in the midst of the overall public review and comment period, which ends on June 6th.

Following that we will -- the University will issue a record of decision and submit that to the Office of Policy and Management. And that record of decision will incorporate comments received tonight.

CEPA is an interesting statute and process in that it is all encompassing, whereas you have specific regulations and programs for wetlands protection or floodplain protection or rare species protection. CEPA incorporates all of those into one document, into one evaluation.

In general, we look at the physical, natural and socioeconomical environment. As you can see, there's a host of elements that need to be addressed. In yellow we've identified those that were the most significant issues identified during the scoping process and during our evaluation. So, we're going to focus my presentation on the portable water
supply, stormwater and surface water quality.

 Just a summary of the proposed action.

 The proposed new Engineering and Science building would
 be a five story structure; one story devoted to
 computational sciences, one to bioengineering, one to
 chemical engineering and two -- two floors for life
 sciences.

 The total square footage is estimated at
 118,000 gross square feet.

 It's estimated that this project would
 attract approximately 182 new students and 11 new
 faculty and staff.

 The building would consist primarily of
 labs and offices. There would be approximately 375 lab
 seats and 175 desks within the building.

 As per State Law and the University's
 Policy, it will be a LEED Silver design, at a minimum.
 Probably exceeding the LEED Silver requirements.

 And as I mentioned previously, the
 building would be located where the old central
 warehouse currently exists. But that is not part of
 this proposed action, because that would occur
 regardless of whether this project moves forward or not.

 This is an oblique aerial view showing
the old central warehouse. This is roughly the
footprint of where the new building would be. This is
the quad area, Glenbrook Road, North Eagleville Road,
and the student Health Services Building, otherwise
known as the infirmary.

The central utility plant is located
adjacent to the site, which is very helpful in terms of
utility connections and some of the other more green
features associated with the development, as I will
state later on.

This is a couple of photographs showing
what the site will look like. This is the old central
warehouse. Now we're looking west toward the pharmacy.

The biology building the central utility
plant are here. As you can see, the site is entirely
developed. There is minimal amount of lawn space, a lot
of pavement. A lot of utilities running underground
here.

This is looking east at the chemistry
building and the old central warehouse.

Essentially looking in the other
direction, this is the old central warehouse and this is
the chemistry building.

Some features of the site. The overall
project area, that is the area of the building and its perimeter -- the area that would actually be under construction is 2.1 acres. One and a half acres of that, or 70 percent, is impervious surfaces. As I showed in the pictures earlier, rooftops, sidewalks primarily.

The subsurface of the site consists of fill. Manmade fill, alluvium and glacial till and various configurations.

Groundwater at the site is quite variable based on recent borings done as part of the project. It ranges from 11 to 24 feet below the ground surface.

And as I mentioned previously, there's numerous underground utilities; steam, electrical, as well as a piped portion of Eagleville Brook.

See, our site is here. Eagleville Brook is piped all along this stretch here. It basically skirts the northern portion of our site, but not within the actual development footprint.

This is the concept plan that's been devised for the project. North is this way. This would be the new Engineering and Science building. Roughly the same size footprint wise as the old central warehouse.
We have a lot of landscaping around the building. A lot more than what currently exists now. As you can see, there's a fair amount of landscaping and lawn associated with the perimeter. We've got a retaining wall that would need to be constructed here in order to provide suitable ramp access to get into the site for deliveries and maintenance as well. But no vehicular -- normal vehicular access would be allowed here.

An oblique rendering. Looking southeast shows the proposed five story structure and the landscaping around it, the chemistry building. The stack for the central utility plant would be here.

As required by CEPA, we looked at alternatives to the preferred site, and the University looked at other potential areas within the Research Neighborhood of the campus. It was thought that for synergistic reasons it would be good to co-locate like facilities within the area of campus, focusing on engineering and sciences. So, this is the preferred site, as I mentioned previously.

Another site that was considered previously is the Engineer 2/Bronwell building site. This would be in addition to the E2 building that would
bridge both structures.

So, in comparing the preferred alternative with the Bronwell and E2 alternative we found that there was no significant difference in reduction of impervious cover between the preferred alternative and Bronwell/E2. In other words, they would roughly have the same amount of impervious cover.

Now, the Bronwell/E2 would require demolition of two wings of the E2 building in order to be constructed. However, Bronwell/E2 would need to be probably an eight story building in that area of campus, which would be not congruent with everything else in that area. Back in 2009 when this alternative was conceived, there was a National Institute of Health Grant application submitted and it did not receive grant funding. And at that time it was only a 55,000 square foot building just to satisfy -- just for whatever they could make up for in lab space. So, in order to make this basically double the size of the building it would have to be eight stories in order to meet the space needs of this project.

We also evaluated the no action alternative, which, of course, does not meet the project goal of improving and expanding the STEM program at the
University, which is the overall purpose and need of the project.

Here we have a plan showing the environmental resources of the site. We have a board in the back which is essentially the same.

The site being here is within the Willimantic River Watershed. Eagleville Brook runs down this way. It's all within the Willimantic River Watershed.

This is the dividing line between that watershed and the Fenton River Watershed.

This is the aquifer protection area. We're not within an aquifer protection area. We're not within a natural diversity database area. In other words, there are no rare species of critical habitats on site. There are no wetlands on the site. There is minimal wildlife habitat, except for urban dwelling mammals; skunks chipmunks and squirrels, et cetera.

There is a piped section of Eagleville Brook that skirts the site, but doesn't actually enter the site. That piped section of Eagleville Brook was piped some time before 1951. So, it's been underground for quite a long time.

FEMA actually still maps this area as a
floodplain, because whoever was doing the mapping at the time didn't look at the aerial photos and realize that the brook is actually underground. But the record still shows that there is a floodplain there, even though it is not an active floodplain and not a real floodplain.

This is just a brief summary of the impacts associated with the project. In terms of traffic. This project will not generate a lot of traffic. Most of the students that would be using the building are already on campus. But there would be some new traffic generation, and it roughly corresponds to a one to three percent increase in traffic at the major intersections in the project area, which is not significant.

In terms of air quality. Being located next to the existing central utility plant there would be a nominal increase in air emissions as a result of the project. But we are replacing the emergency generator for the health services building as part of this project. This new emergency generator would be a mobile unit, but it would be larger, so there would be a small increase in air emissions as a result of that, but nothing significant.

In terms of water quality, this would not
be a major pollutant source. And as I mentioned previously, there's an overall reduction in impervious cover on the site, which is a good amenity for the site. We estimate that to be about 3,000 square feet impervious cover than what exists there today.

In terms of water supply, it should not be a significant negative impact. By the time this building is constructed the Connecticut Water Company interconnection will likely be operational. And overall, the total net increase in demand would be 920 gallons per day of portable water and about 680 gallons per day of non-portable water, using the reclaimed water system, and I'll talk a little bit more about that in one of the next slides.

As I mentioned, no protected species on site, no wetlands, no flood -- no active floodplains, although it is mapped as a floodplain, so we have to go through the flood management certification and at least acknowledge that, even though there are no flooding issues associated with the site.

There was a shadow analysis done, which is important when you've got buildings in tight configuration, and that shadow analysis shows that there is really no significant change in the shadows, you
In terms of visual aesthetics, it would be a modern university building, consistent with the character of that area.

In terms of utilities, all the requisite utilities are available on site because of the proximity of the central utility plant.

Noise impacts. No negative impacts.

Just associated with the construction.

In terms of socioeconomics, we see there will be positive economic benefits, primarily in job creation, as well as the additional students attending the University.

In terms of cultural resources, there are no historic or archaeological resources affected by the project. This was confirmed by the State Historic Preservation Office in their public scoping review.

Now, in terms of cumulative impacts, there is potential for some cumulative impacts, particularly traffic and stormwater, and those will be addressed in the Master Plan EIE which will be kicking off very shortly.

In terms of water supply, it's estimated

QUALIFIED REPORTING SERVICES
that the total increase in water demand as a result of
this project would be about 1,600 gallons per day on
average. 920 of that would be portable water, and 680,
or roughly 40 percent, would be non-portable water. And
by non-portable water in this instance we're talking
about toilet flushing, basically. Non-portable water
could also be water that's used to cool power generation
facilities, like the central utility plant.

The University's reclaimed water facility
which was constructed in 2005 would provide this
non-portable water source.

So in essence, a real new demand for
portable water -- for water, actually, is 920 gallons
per day, which is a very low amount, considering the
size of the structure.

Now, the Connecticut Water Company's
interconnection will likely be completed in time for
this opening, and cumulative water demand has already
been evaluated in the water supply plan which was
developed in 2011. There was an EIE done on that and
there was many public and agency comments. And this
project was included as part of that.

Now, we need to consider Eagleville Brook
-- this was a significant public scoping comment. The
preferred site is within the Eagleville Brook Watershed. Eagleville brook is currently not meeting water quality standards because of a wide array of pollutants that are causing impairment. There has been a total maximum daily load, TMDL, established for Eagleville Brook, or at least this section of Eagleville Brook, running through and south of the campus. And that TMDL focuses on impervious cover and bacteria. The goal of the TMDL is to improve water quality and habitat within the brook through the reduction and minimization of impervious cover. And the goal of the TMDL is to reduce impervious cover by 59 percent, the overall goal is to reduce -- to reduce the impervious cover to 12 percent within the watershed. And that will be accomplished primarily through a variety of stormwater BMP's, not only on this project but other University projects forthcoming.

The impacts to Eagleville Brook were discussed in the EIE, as I mentioned previously. There's actually a net decrease of 3,000 square feet of impervious cover as a result of this project. So, that is consistent with the goals of the TMDL in reducing impervious cover and improving water quality. And that will be done primarily through the extensive lawn, gardens and tree plantings, which would cur along the
site perimeter.

There is -- as I mentioned previously, the groundwater on the site is between 11 and 24 feet below ground surface, and given that the foundation requirements of the site there would be some groundwater encountered which could effect the foundation; therefore, it's proposed to collect some of that groundwater and convey it to the piped portion of Eagleville Brook. What that does is protect the foundation of the building. It also insures that the groundwater flow stays within the watershed, because sometimes if -- in urban settings water can flow contrary to the watershed divide because of utilities and fill and other sorts of anomalous subsurface conditions.

This will result in a slight increase in baseload to the brook. Nothing significant, but should be an overall improvement.

And the cumulative impacts to the brook will be a focus of the Master Plan EIE, which will incorporate this project, the STEM Residence Hall project, which you will hear about shortly, and other projects envisioned for the Next Gen Program.

And that concludes my presentation at
this moment.

I just want to remind you that comments will be received until June 6th, 2014. You can send your comments to Jason. There's his fax number, his email number and address.

You can also -- you can take a comment form, if you would like, and fill that out if you want to, or you can just fax or email, whichever you prefer, or the old-fashioned mail, if you would like.

And with that, that concludes my presentation. I turn it back over to Jason.

MR. COITE: Thank you, Steve.

As Steve mentioned, this is the portion of the Science Building public hearing where we will open the floor to comments. If you do have a comment I would just ask that you raise your hand and we will pick on you in an orderly fashion.

And as I mentioned, we are being recorded for a later transcription. And this will become part of the record of decision.

With that, are there any comments from the general public?

Would you please come up and state your name for the record, your address, if you would like,
and any affiliation that you represent.

 MS. REICH: My name is Meg Reich. I'm the President of the Willimantic River Alliance. I live here in Mansfield. I attended the University of Connecticut from 1971 to 1975, and I have been adjunct faculty in Urban and Regional Planning in the Geography Department here at UConn.

 The comments that I am making are based in part upon the comments that I submitted in the scoping hearing. Those were written comments that I believe are attached in the appendix of this current EIE. And also because last week I took a walk around the central warehouse and in the area that is the existing quadrangle between the old central warehouse, which still exists, and the chemistry building, pathobiology building and pharmacy building, and I looked at each of the catch basins and yard drains and was surprised, even though it's May, that they haven't been cleaned out. And while they're not clogged up with sand and gravel and salt and dirt from the area, they definitely need to be cleaned out.

 The Willimantic River Alliance advocates for the Willimantic River and Eagleville Brook, which is contained in a culvert under, if not the exact site of

QUALIFIED REPORTING SERVICES
this building, virtually touching the site of this building.

It's been normal for years, decades, to simply drain the storm drainage from the roof -- roof of all of the buildings on campus and from the paved surfaces directly into Eagleville Brook. Pretty normal procedures. That's the way the world works. And the storm drains that are there are pretty normal for the installation of when they probably were put in, in the 1950's, maybe in the 40's. And with improvements over time similar kinds of structures have been put in, but they're not up to speed and they don't serve the purpose of filtering the stormwater and the runoff of the impervious cover. They don't -- they may catch some sand and gravel, but they certainly do not filter out the urban oils and solvents and grease and salt and the -- some of the finds of the eroding pedestrian quadrangle that exists there now. And so, the Willimantic River Alliance is concerned that the proposed stormwater management plans, as detailed in the EIE document for the new Engineering and Science Building do not adequately prevent the further degradation of Eagleville Brook.

The -- I'm not reading exactly from my
two pages of comments here, but more summarizing them.

The EIE states and the presentation just made indicates that no new surface or groundwater improvements or actions are proposed since no mitigation measures are warranted. We don't feel that's the case. We feel new mitigation measures are warranted.

The text says that the current infrastructure of catch basins and yard drains are proposed to be used for this new building and they will direct stormwater runoff to be piped directly into Eagleville Brook, which flows through a large underground culvert beneath the site and into the Willimantic River. Over the decades, if you look at an air photo or go to Eagleville Dam, you can see the giant sandbar delta that has formed in what's called Eagleville Pond or Eagleville Lake from all the sand and sediment that has washed downstream from the UConn campus.

Indeed all of the buildings in this quadrangle and all along Eagleville Brook dispose of stormwater or roof runoff this way, but, as I mentioned, they don't adequately filter the dirt, sand, salt, oil, grease or urban debris washed into the brook. And this impervious cover is why Eagleville Brook has impaired
water quality, cannot support aquatic life and is the subject of the total maximum daily load calculation and a watershed management plan.

The executive summary of the EIE says that before the building is scheduled to be complete, the University's Master Plan and Environmental Impact Evaluation will have been completed and this project will be reviewed for its impacts and mitigation opportunities for "conceptual stormwater management techniques", such as bio-infiltration, green roofs, permeable or porous pavements, cisterns collection and treatment. Well, we think that that will be too little too late. The stormwater planning needs to be done now, as soon as possible, particularly since the design team, on page 42 of the EIE document, says that opportunities for infiltration could be limited in this site. And indeed, since we learned that part of the pharmacy building had underground rooms and with all the utilities and other structures that are under the existing quadrangle among the existing buildings, yeah, there probably isn't much room for infiltration.

We had commented in our previous scoping hearing comments that one of the top ten TMDL projects listed on the University's website, and in other printed
reports, called for disconnecting the stormwater runoff from the roof of the chemistry building into a rain garden that would have been built -- was suggested to be built, basically, on the site in the quadrangle of this building. But now we learn that with what's underground there that's probably not possible. The bio-infiltration wouldn't work, and, yeah, that makes sense. Too bad that wasn't clear from the 25 percent engineering plans that had been made of that project.

Also the current campus stormwater management plan has not yet been updated to include this building or other new STEM program buildings that are being planned. And the campus master plan is currently being updated, and the consultants, at a meeting almost a month ago at the Dodd Center, acknowledged that the stormwater management is one of the challenges to future campus development. New building projects on the Storrs campus here are on hold until these plans are completed.

And then, as has been explained, one environmental impact evaluation for all the new buildings is envisioned to be submitted instead of preparing separate EIE's for each new building, like we have for the two buildings that are under public hearing this evening.

The new Engineering and Science building
and the new STEM Residence Hall project, however, are going forward in advance of the completed master plans since they are critical to accommodate the anticipated additional STEM students and faculty. And the Willimantic River Alliance does acknowledge that previous campus plans have envisioned these uses, a dormitory and some sort of science building, at the locations -- the preferred locations that are proposed in the EIE's, and that there is a need to expedite these two buildings in advance of the Campus Master Plan being completed. But the EIE for the STEM Residence Hall includes stormwater and low impact development improvements, while the EIE for the new Engineering and Science building states that no surface and groundwater mitigations are warranted, and that the stormwater management plans and low impact development actions for this building be developed after the Campus Master and Stormwater Management Plans are completed. We disagree with this, and we recommend that the stormwater runoff management plans for the Engineering and Science building, as well as the site and for adjacent areas, be expedited so that stormwater and low impact development best management practices can be included in the pre-construction plans for this building.
We also think that plans for the new pedestrian quadrangle that's proposed here, but is not proposed to be funded in this project, need to be developed, at least in schematic form, very preliminary form, at the same time, since the new quadrangle will undoubtedly host the measures that are going to be needed for this new building, as well as the retrofits needed to disconnect the runoff from the adjacent chemistry pathobiology and pharmacy buildings around this planned new pedestrian quadrangle.

While the renovation of the quadrangle, as I mentioned, is not part of this project, consideration needs to be given at this time and preliminary plans made to place stormwater management improvements in and under the quadrangle space in the future, not only for this building, but for all those other buildings. It's no longer appropriate to continue to direct unfiltered, hot, dirty, urban stormwater runoff from this building, or the adjacent buildings or any of the buildings that flow stormwater into Eagleville Brook.

And, as I mentioned, the existing catch basins and yard drains are not up to snuff with current standards or with the TMDL Plan, the Watershed Management Plan or any other things.
The University has planned for and constructed a number of low impact development projects throughout the campus which serve to disconnect and/or filter stormwater runoff from the buildings and pavement before it enters the natural streams, which drain water from the campus to both the Willimantic and the Fenton Rivers, and some of these projects are quite a distance from Eagleville Brook.

This building, and its site, is directly above, or within inches of the culverted brook. And measures put in place on this site will have more direct impact on improving the water quality of the brook since it's so adjacent to the brook -- directly adjacent to it that it needs to be planned now, and it cannot wait for the update of the other plans.

So, we recommend that the stormwater plans for this section of the campus be expedited in order to go forward with this project. At a minimum we suggest raised and/or filtered catch basins to replace the existing infrastructure for the entire new Engineering and Science building site. If not, then this project should be put on hold until the campus plans are all completed, just like the other projects on campus. The appropriate stormwater and low impact
development projects can then be planned and financed to accommodate this new building in the more distant future.

The University has adopted a sustainable design and construction policy -- LEED standards, and it's seeking LEED certification for this building -- and guidelines for sustainable design and low impact development goals, and these need to be fully applied to the stormwater runoff challenges of this building and its site and for the adjacent new pedestrian quadrangle and to retrofit the stormwater runoff from building surrounding the quadrangle which contribute to the degradation of water quality in Eagleville Brook and thus the Willimantic River.

Thank you.

MR. COITE: Thank you.

Any further comments.

MR. SQUIRES: Yes. She raised the storm drainage thing.

MR. COITE: Have you stated your name for the record?

MR. SQUIRES: My name is Steven Squires.

And in past years I was the originator organizer of the coalition to save Horsebarn Hill many
years ago.

In any case, I was walking through campus the other day -- and I grew up in town -- and I was a bit shocked by -- speaking of storm drainage -- a building I walked by to access, what is it, North Eagleville Road and Hillside Road, and it was -- I was walking down the alley between the two large buildings. Of course it was dark in there, in this alley, and it was a sidewalk area. But I remember walking pretty close to the back side of this building, I guess it was the back, and I was shocked by what I saw. I guess there was a shrubbery sort of boundary and it was like a deep pit, a V-pit, the whole length of that backside of this building. And it was so deep I felt that if I had tumbled down there I wouldn't get out and they would find my skeleton at Halloween next year.

In any case, it was very amazing to me. I had never seen anything like this. I'm not sure what it's for. It had to be from water runoff of some kind, and where it went, I have no clue, but it was the whole length of this side of the building. I'm sure anybody could see it walking by there right now. And I was caught by this, and now I'm hearing the storm drainage issue here. I said, "Well, my God, I'd better ask what
the heck is going on with this and what is it?" I didn't see where it was in compliance with much of anything, either safety or perhaps even polluted water runoff. So, I'm not sure what was going on with this. And anybody can walk by and see this thing.

But what's of interest to me too is the concept which is now abroad in the land that this university is somehow positive for sustainability. I don't see it.

We have a president now who's asking for 6,000 more students to be coming to this University. She has an ever expansive view of the numbers that can be sustained in our little town of Storrs, Connecticut where I grew up, went to grammar school, et cetera.

And my father, he was a professor, an associate professor, an all of this and the other, so I grew up, blood and bones, on the salary that he got from this University. I'm not against this University; however, where does it stop. As an Environmental Compliance Manager perhaps you can answer to me what is sustainable and what does that concept mean for this university, which has got a growth model on the corporest, you know, level? It just won't stop. 6,000 new students the president wants to bring in here.
It's not going to stop there. Where does it stop? Why not build some more branches. Willimantic, maybe they could benefit by a little more taxes and such. Wherever. I don't see why it always has to be here in Storrs. Yes, we're proud of our Storrs campus, all of it, whatever.

I also believe these two buildings -- I walk across campus and I see all of the green spaces now being built upon by large brick buildings. There are no campus like swatches of grassland on this campus. The only two I know of right now are Horsebarn Hill, which we saved about 12 years ago at great aggravation -- and the Trustees did say they would save this in trust, et cetera. I wait to see if that's going to happen in the longrun. And also that swatch below the congregational church with all the beautiful old buildings, the older campus buildings and the beautiful grass swatches, that's about it, right next to Mirror Lake there. And I don't see where those are going to last. Those at least look like a beautiful campus atmosphere, and we'd like to sustain some campus atmosphere in the inner campus of this University. I don't see it happening. I see every empty grass swatch being built upon. This University has the disease of a
growth model called sustainability, and it's a big hoax.

In any case, I did want to find out what
that drainage ditch I saw, and almost got sucked down
into -- I mean, if I looked at it any longer I would
have fallen down into the thing out of just sheer
dizziness. So, any idea of what kind of a construction
engineering thing is that for a building?

You wouldn't know what I'm talking about?

MR. COITE: For the purpose of tonight's

hearing we will record your comments and --

MR. SQUIRES: That's fine.

MR. COITE: And I'm more than willing to
discuss with you off line questions you may have about
drainage features you see on campus.

MR. SQUIRES: Okay. That would be
excellent, sir.

MR. COITE: Thank you.

Are there any further comments on

tonight's hearing on the Science Building?

(No response.)

Okay. With that we will close the
Science Building hearing at 7:45.

(Whereupon the hearing was adjourned for
the day.)
CERTIFICATION

STATE OF CONNECTICUT)
COUNTY OF HARTFORD)

I, Nancy E. Paretti, a Notary Public in
and for the State of Connecticut, do hereby certify that
the forgoing record is a correct and verbatim
computer-aided transcription of the proceeding herein
set forth.

I further certify that I am neither
counsel for, nor related to, nor employed by any of the
parties to the action in which this proceeding is taken,
and further certify that I am not related to, nor an
employee of any attorney or representative employed by
the parties thereto, nor am I financially interested in
this action.

In witness whereof I have hereunto.
set my hand and affixed my notarial seal this date
June 5, 2014.

Nancy E. Paretti
Court Reporter/Notary Public

University of Connecticut
New Science and Engineering Building
EIE Record of Decision
Responses to Comments

Town of Mansfield (M)
May 28, 2014

M-1 Comment: We strongly encourage the University to implement the mitigation measures identified in the report prior to opening the building. Transportation Demand Management, expansion of public transportation options and decreasing resident students demand for cars can all serve to mitigate traffic as the University expands. Additionally, the University should periodically evaluate and reassess the effectiveness of these approaches and provide the Town with a report detailing the results.

Response: The mitigation measures stated in the comment and in the EIE are on-going efforts by the University to reduce traffic demand on state and local roadways in and near the campus. These measures will continue regardless of the outcome of the NESB project and will be reviewed during the Master Planning process. These measures are described below.

UConn actively discourages resident students from bringing personal vehicles to campus. Only upper-class resident students with more than 54 academic credit hours may purchase parking permits. As a result, only 23% of on-campus residents bring their vehicles to campus. The on-campus resident student permit parking capacity has been reached. A wait-list has been established for those hoping for future accommodation.

Resident student parking permits do not provide access to parking that is conveniently located to most classroom spaces. For this reason, there is no logistical incentive for resident students to drive from their residences to class. The use of vehicles by resident students who bring their vehicles to campus is typically greatest after business hours, when few classes are held and traffic volume on the roadways is relatively low.

The first and second year residents assigned housing at the University will lack the earned academic credit hours needed to pre-qualify them for on-campus parking. The residential student parking demand will therefore be unchanged by the opening of the NESB.

The impact to parking, traffic as well as the construction project, will be periodically assessed throughout the project. The University will continue to pursue the following on-going, long-term efforts associated with transportation and parking, that will also help to avoid or mitigate any adverse impacts: 1) The aggressive promotion of campus-wide ride-share/carpooling programs, 2) The enhancement or increase of the available public transportation options both locally through the on-campus shuttle and commercial bus services and regionally through partnerships with other transit authorities, 3) The stringent enforcement of on-campus parking regulations to control and reduce on- and off-campus scofflaw parking.
M-2 Comment: Given the extent of future expansion contemplated by NextGenCT, we restate our request that the campus-wide master plan currently being prepared include a comprehensive, multi-modal transportation plan for the build-out of the campus that considers impacts to the local transportation network, including off-campus improvements for vehicular, pedestrian, bike and transit circulation. Transportation initiatives should be designed to integrate with the Nash Zimmer Transportation Center at Storrs Center. This facility currently provides a central location for students, faculty and town residents to access University, WRTD and Peter Pan bus services. As noted above with regard to the mitigation measures proposed for this project, the transportation plan should also include performance measures and a framework for reporting and modifying approaches as needed.

Response: As stated in the EIE, the Master Plan EIE will include an evaluation of impacts on and off-campus that are directly or indirectly the result of the NextGEN projects. These impacts will be evaluated for all modes of transportation that currently service the University including the Nash Zimmer Transportation Center. An emphasis of the Master Plan will be to evaluate means of reducing traffic and parking demand at the University through the maximization of transit ridership.

M-3 Comment: Lastly, it is imperative that the University instruct its construction contractors to use state roads, not local roads, to access the site to minimize the potential for disturbance in neighborhoods adjacent to campus.

Response: Construction vehicle access to the site will be stipulated in the Construction Specification documents. Within the Town of Mansfield, construction vehicles will be required to use only State or institutional roads. The vast majority of construction workers will be required to be on their work site by 7:00 a.m. each morning. The majority of the construction team members will depart the campus between the hours of 3:00 p.m. and 4:00 p.m. each weekday afternoon. The resulting travel patterns will fall before both the morning and evening peak commute periods. For these reasons, parking and transportation mitigation plans have not been proposed for immediate implementation. In addition, the feasibility of requiring the construction team to park on the Depot Campus and to use a University-provided shuttle service to reach their construction site is also under review.

M-4 Comment: If the Connecticut Water Company interconnection has not been completed prior to the opening of this building, any use of Well D should he only with prior approval by CT DEEP. The University should provide DEEP with detailed operational plans that include ceasing use of the well if impacts to streamflow are identified during drought periods and the planned restrictions on water usage that would be implemented if well production was ceased.

Response: The University anticipates submitting a proposed plan to DEEP for the use of Well D during low-flow periods no later than August 2014. The University will seek approval for use of Well D as outlined in the Water Supply Plan, and will work with DEEP to develop a well management plan that includes river monitoring. The plan will
provide guidance for well production that guards against adverse impacts to the river streamflow. The plan will be based on field data, and the data will inform a long term management strategy including permissible pump rates, frequency of use, and rest periods.

M-5 Comment: Streamflow monitoring stations should be installed in appropriate locations to ensure that use of Well D does not negatively impact streamflow. DEEP should be actively involved in monitoring streamflow when the well is in use during drought periods.

Response: As requested by DEEP, the University will provide a detailed plan for monitoring streamflow at locations to be determined to better define the streamflow gain of the river, as well as a plan for monitoring ground water levels in the vicinities of Well D and the river to assess and the river’s response to pumping. The plan will also identify the usage patterns for discontinuing use or resting Well D, since it is dependent upon streamflow, weather and other considerations. The University expects to provide monitoring data collected in connection with the use of Well D during low flow periods to the DEEP at least on a weekly basis or as otherwise requested by DEEP.

M-6 Comment: The University should continue to promote water conservation through mandatory water usage restrictions during droughts, make improvements to facilities to reduce water consumption, connect additional buildings to the Reclaimed Water Facility and make operational changes.

Response: The University is committed to adhering to its Wellfield Management Plan and Water Conservation Plan which include requesting voluntary and requiring mandatory water conservation in response to low streamflow triggers. As stated in the EIE, the NESB will make use of reclaimed water for toilet flushing which will significantly reduce water demand of the NESB. The University is also committed to using reclaimed water for the cooling towers associated with the Innovation Partnership Building (IPB) and for cooling towers and toilet flushing at the STEM Residence Hall.

In addition, the University is committed to mitigating shortfall in peak day water demands that are projected to occur if the Connecticut Water Company connection is not finalized as scheduled. The University will identify and implement new water saving and conservation measures prior to August 2016. These measures will reduce on campus water consumption by accelerating ongoing water conservation efforts and replacing older, existing fixtures so that the overall reduction would offset the approximately 53,400 gpd average day demand expected to be attributable to the opening of the three new buildings.
M-7 Comment: While the site is located within the Eagleville Brook watershed, we understand that site conditions make use of stormwater management techniques such as rain gardens difficult in this area. However, the University does have the opportunity to reduce effective impervious cover and stormwater runoff through the installation of a green roof on this new building. As such, we urge you to consider this option as part of the building design.

M-7 Response: In response to comments received from the Town of Mansfield, the WRA, and others, the University has developed additional strategies that will effectively disconnect a significantly larger portion of the project’s impervious cover than what had been proposed in the NESB’s original project description. Since the date of publication of the EIE, the project architect and landscape architect have proposed three conceptual low impact development (LID) /green infrastructure (GI) strategies to address stormwater runoff from the NESB site. The application of pervious concrete and/or pavers will be dependent on appropriate soils and the engineering of an appropriate subsurface medium. In addition, a green roof would be added to a portion of the NESB roof, with the remainder being considered for photovoltaic applications to further improve sustainability onsite. The total amount of treated or disconnected Impervious Cover (IC) for these strategies would be at least 11,000 SF (which is in addition to the 3,000 SF of IC reduction for the NESB project stated in the EIE). The requisite Flood Management Certificate application to DEEP for this project will include documentation referencing the use the Guidance Document and Checklist for Low Impact Development Best Management Practices for UConn, developed by the UConn CLEAR program staff as part of the Response Plan for the Eagleville Brook Impervious Cover TMDL.

In addition, the University affirms that it will maintain its stormwater infrastructure and LID/GI elements in accordance with industry standards and best management practices, including but not limited to regular inspections and cleanings of catch basins and proprietary stormwater devices (such as swirl concentrators) and porous pavements, as well as weeding, pruning, and mulching of rain gardens, bioretention swales, and vegetated roofs, all in a manner consistent with current appropriations.

M-8 Comment: Additionally, given the importance of this issue, the University should prepare a stormwater master plan as part of the campus-wide master planning effort. The plan should emphasize the use of Low Impact Development (LID) stormwater management practices and reductions to effective impervious cover. These approaches should be used throughout campus and not only within the Eagleville Brook watershed.

M-8 Response: The University will consider the impact of the NextGen program on stormwater utilities and water quality within Eagleville Brook, Roberts Brook and other receiving waters as part of its Master Plan process. During the master plan, the feasibility of LID and stormwater BMPs will examined on a conceptual scale in order to reduce the quantity and improve quality to the above mentioned waters. Then as the Master Plan
projects are designed, these conceptual plans will be designed and constructed either as part of the individual projects or as separate stormwater improvements.

M-9 Comment: All new lighting installed as part of this project should be Dark Sky compliant with full shield cutoffs to reduce light pollution.

M-9 Response: New lighting for the project will incorporate measures to reduce light pollution trespass and skyglow. The University’s Campus Sustainable Design Guidelines cite a goal of providing site lighting that is sensitive to light pollution of the night sky and minimizes impacts on nocturnal environments. Listed strategies in this plan include the following (as cited from the Guidelines):

- Meet the light levels and uniformity ratios recommended by the Illuminating Engineering Society of North America (IESNA) Recommended Practice Manual: Lighting for Exterior Environments.2
- Design exterior light fixtures with shielding to prevent light spillage to the night sky per the following standards:
 - Exterior fixtures with output greater than 3500 lumens shall be Full Cutoff.
 - Exterior fixtures with output less than 3500 lumens shall be Cutoff or Full Cutoff.
 - Locate, aim, and shield all exterior light fixtures to minimize light trespass across campus boundaries.

The University of Connecticut at Storrs Landscape Master Plan and Design Guidelines also provide guidance relative to standardized exterior fixture selection.

Finally, since the building will be pursuing LEED certification, additional requirements relative to lighting will need to be followed to meet that certification as well.

M-10 Comment: Correct second to last sentence of first paragraph under Existing Conditions to remove reference to Dairy Mart and specify property address as the location instead of business names as businesses change over time.

M-10 Response: Comment noted. The property henceforth will be referred to by its address (125 North Eagleville Road).

M-11 Comment: Replace the language in the third paragraph related to Mansfield fire services with the paragraph contained in the EIE for the STEM Residence Hall. The information contained in this document is outdated and incorrect; Mansfield no longer has three separate volunteer fire departments.

M-11 Response: Comment noted.
Willimantic River Alliance, Inc. (WRA)
May 29, 2014

WRA-1 Comment: “The Willimantic River Alliance (WRA) is concerned that the plans for the proposed New Engineering and Science Building (NESB), as described in the Environmental Impact Evaluation (EIE), do not currently include adequate measures for preventing further degradation to Eagleville Brook, the impaired water body that flows from the UCONN campus in Storrs to the Willimantic River. The EIE for the NESB states that no new surface or groundwater improvements or actions are proposed, since no mitigation measures are warranted. The current infrastructure of catch basins and yard drains are proposed to be used for this new building, directing stormwater runoff to be piped directly into Eagleville Brook, which flows through a large underground culvert beneath the site. Indeed, all the buildings around this quadrangle and in this section of campus dispose of roof runoff and stormwater runoff from paved surfaces in this manner. These do not adequately filter the dirt, sand, salt, oil, grease, or urban debris washed off the impervious cover of the paved portions of campus; the grime of the urban campus is piped directly into the brook. This impervious cover (IC) is why Eagleville Brook has impaired water quality, cannot support aquatic life, and is the subject of a TMDL (Total Maximum Daily Load) calculation and a watershed management plan.”

WRA-1 Response: The NESB EIE proposed a net decrease in IC of approximately 3,000 SF which was in keeping with the goal of removing IC in the Eagleville Brook watershed. However, in response to comments received from the Town of Mansfield, the WRA, and others, the University has developed additional strategies that will effectively disconnect a significantly larger portion of the project’s impervious cover than what had been proposed in the NESB’s original project description. Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

The University, separate from this project, is continuing to follow the Eagleville Brook Watershed Management Plan through the use of LID projects and retrofits within the watershed (see response to WRA-3 below).

WRA-2 Comment: “The NESB EIE Executive Summary says that before the building is scheduled to be complete, the University's Master Plan & EIE will have been completed and that this project will be reviewed for its impacts and mitigation opportunities for ‘conceptual’ stormwater management techniques such as bio-infiltration, green roofs, permeable or porous pavements, cistern collection and treatment. That will be too little and too late. Stormwater planning needs to be done now, as soon as possible, particularly since the Design Team says that opportunities for infiltration could be limited in this area.

The current campus stormwater management plan has not yet been updated to include the NESB and other new STEM program buildings being planned. The campus master plan is
currently being updated and the consultants acknowledge that stormwater management is one of the ‘Challenges' to future campus development. New building projects on the Storrs Campus are on hold until these plans are completed, then one EIE for all new buildings is envisioned to be submitted, instead of preparing an EIE for each new major structure. The NESB and the new STEM Residence Hall projects, however, are going forward in advance of the completed master plan, since they are critical to accommodate the anticipated additional STEM students and faculty.

WRA does acknowledge that previous campus plans have envisioned such uses at the locations now under consideration, and the need to expedite these two buildings, in advance of the campus master plan being completed, may be warranted.

The EIE for the STEM Residence Hall, however, includes stormwater and Low Impact Development (LID) improvements while the EIE for the NESB states that no surface or groundwater mitigation measures are warranted, and that stormwater management plans and LID actions for this building be developed after the campus master and stormwater management plans are completed.

The Willimantic River Alliance disagrees with the NESB EIE, and recommends that the stormwater runoff management plans for the NESB site and adjacent areas be expedited so that stormwater and LID Best Management Practices (BMP) can be included in the pre-construction plans for the NESB. Plans for the new pedestrian quadrangle also need to be developed at the same time, since it will undoubtedly host the measures for the NESB, as well as the retrofits needed to disconnect runoff from the adjacent Chemistry, Pathobiology and Pharmacy buildings around the planned 'new' pedestrian quadrangle. While the renovation of the quadrangle is not be a part of this NESB project, consideration needs to be given and preliminary plans made to place stormwater management improvements in and under the quadrangle space in the future, not only for the NESB building, but for the other buildings around the quadrangle."

WRA-2 Response: The STEM Residence Hall, a separate project being considered under its own CEPA review, will result in an increase in impervious cover. As a result, mitigation to control runoff and prevent an increase in peak flow rates and total runoff volume for the STEM site were necessary to offset any potential negative impacts related to the increase in impervious cover for that project. The NESB project as proposed in the EIE would result in a decrease in impervious cover. Hence, mitigation to control runoff and prevent an increase in peak flow rates was not presented in the EIE.

However, since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

WRA-3 Comment: “The University has planned for and constructed a number of LID projects throughout the campus, which serve to disconnect and/or filter the stormwater runoff from the buildings and pavement before it enters the natural streams which drain water from
the campus to the Willimantic and Fenton Rivers. Some of these projects are quite a distance from Eagleville Brook. The NESB project site is directly above this brook, which is channeled in an underground culvert. Measures put in place on this site will have more direct impact on improving the water quality of the brook, need to be planned now, and cannot wait for the update of the other plans. WRA recommends that the stormwater plans for this section of the campus be expedited, in order to go forward with the NESB project. At a minimum, raised and filtered catch basins need to replace the existing infrastructure for the entire NESB site. If not, then the NESB project should be put on hold until the campus plans are all completed, just like the other projects on campus. The appropriate stormwater and LID projects can then be planned and financed to accommodate this new building in the more distant future.”

WRA-3 Response: The University has constructed multiple LID projects on the Storrs Campus within the Eagleville Brook watershed as part of new development and as retrofits for existing development on campus. Several of these are in close proximity to the NESB, including rain gardens at Towers Residence Halls, vegetated roofs on portions of the Gant Science Complex Plaza and the recent Storrs Hall addition, and pavers/porous pavement at the Lakeside Building, the Field House, Storrs Hall, and Towers. Documentation of many of the implemented projects is available on the following website: http://clear.uconn.edu/projects/TMDL/progress/index.htm.

The NESB project presents a net benefit for stormwater, by reducing impervious cover on the limited site area through building design and also through the use of LID in the form of a green roof and porous concrete/pavers. Please see the response to comment M-7 for a more complete discussion.

WRA-4 Comment: “The University has adopted a Sustainable Design & Construction Policy, LEED standards, guidelines for sustainable design and low impact development goals. These need to be fully applied to the stormwater runoff 'challenges' of the NESB site, the adjacent 'new' pedestrian quadrangle, and to retrofit the stormwater runoff from buildings surrounding the quadrangle which contribute to the degradation of water quality in Eagleville Brook and thus the Willimantic River.”

WRA-4 Response: The Campus Sustainable Design Guidelines have been applied by the University to the NESB project. The Guidelines indicate that the University will select strategies from the Guidelines for incorporation into projects if “the University determines that those strategies are prudent and feasible given the unique site and building characteristics.” The Guidelines list a goal of reducing stormwater runoff impacts to water resources relative to stormwater quantity and quality from development projects. Several strategies cited to achieve this goal, as presented in the Guidelines, were considered and have been incorporated into the design for the project. Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.
Meg Reich, President of the Willimantic River Alliance, Inc. (WRA-ORAL)
Oral Comments Provide at the Public Hearing on May 29, 2014

WRA-ORAL-1 Comment: “And also because last week I took a walk around the central warehouse and in the area that is the existing quadrangle between the old central warehouse, which still exists, and the chemistry building, pathobiology building and pharmacy building, and I looked at each of the catch basins and yard drains and was surprised, even though it’s May, that they haven’t been cleaned out. And while they’re not clogged up with sand and gravel and salt and dirt from the area, they definitely need to be cleaned out.”

WRA-ORAL-1 Response: The University affirms that it will maintain its stormwater infrastructure and LID/GI elements in accordance with industry standards and best management practices, including but not limited to regular inspections and cleanings of catch basins and proprietary stormwater devices (such as swirl concentrators) and porous pavements, as well as weeding, pruning, and mulching of rain gardens, bioretention swales, and vegetated roofs, all in a manner consistent with current appropriations.

WRA-ORAL-2 Comment: “And the storm drains that are there are pretty normal for the installation of when they probably were put in, in the 1950’s, maybe in the 40’s. And with improvements over time similar kinds of structures have been put in, but they’re not up to speed and they don’t serve the purpose of filtering the stormwater and the runoff of the impervious cover. They don’t – they may catch some sand and gravel, but they certainly do not filter out the urban oils and solvents and grease and salt and the – some of the finds of the eroding pedestrian quadrangle that exists there now. And so, the Willimantic River Alliance is concerned that the proposed stormwater management plans, as detailed in the EIE document for the new Engineering and Science Building do not adequately prevent further degradation of Eagleville Brook.”

WRA-ORAL-2 Response: Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.
WRA-ORAL-3 Comment: “The EIE states and the presentation just made indicates that no new surface or groundwater improvements or actions are proposed since no mitigation measures are warranted. We don’t feel that’s the case. We feel new mitigation measures are warranted.”

WRA-ORAL-3 Response: Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

WRA-ORAL-4 Comment: “The executive summary of the EIE says that before the building is scheduled to be complete, the University’s Master Plan and Environmental Impact Evaluation will have been completed and this project will be reviewed for its impacts and mitigation opportunities for “conceptual stormwater management techniques”, such as bio-infiltration, green roofs, permeable or porous pavements, cisterns collection and treatment. Well, we think that that will be too little too late. The stormwater planning needs to be done now, as soon as possible, particularly since the design team, on page 42 of the EIE document, says that opportunities for infiltration could be limited in this site. And indeed, since we learned that part of the pharmacy building has underground rooms and with all the utilities and other structures that are under the existing quadrangle among the existing buildings, yeah, there probably isn’t much room for infiltration.”

WRA-ORAL-4 Response: Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

With respect to the quadrangle adjacent to the NESB and the surrounding area, opportunities for stormwater improvements will be evaluated as part of the master planning currently underway. Please see the response to comment M-8 for a more complete discussion.

WRA-ORAL-5 Comment: “But the EIE for the STEM Residence Hall includes stormwater and low impact development improvements, while the EIE for the new Engineering and Science building states that no surface and groundwater mitigations are warranted, and that the stormwater management plans and low impact development actions for this building be developed after the Campus Master and Stormwater Management Plans are completed. We disagree with this, and we recommend that the stormwater runoff management plans for the Engineering and Science building, as well as the site and for adjacent areas, be expedited so that stormwater and low impact development best management practices can be included in the pre-construction plans for this building.

We also think that plans for the new pedestrian quadrangle that’s proposed here, but is not proposed to be funded in this project, need to be developed, at least in schematic form, very
preliminary form, at the same time, since the new quadrangle will undoubtedly host the measures that are going to be needed for this new building, as well as the retrofits needed to disconnect the runoff from the adjacent chemistry pathobiology and pharmacy buildings around this planned new pedestrian quadrangle.”

WRA-ORAL-5 Response: With respect to the STEM Residence Hall, please see the response to comment WRA-2. With respect to stormwater management at the Engineering and Science Building, please see the response to comment M-7. With respect to the quadrangle adjacent to the NESB and the surrounding area, opportunities for stormwater improvements will be evaluated as part of the master planning currently underway. Please see the response to comment M-8 for a more complete discussion.

WRA-ORAL-6 Comment: “While the renovation of the quadrangle, as I mentioned, is not part of this project, consideration needs to be given at this time and preliminary plans made to place stormwater management improvements in and under the quadrangle space in the future, not only for this building, but for all those other buildings. It’s no longer appropriate to continue to direct unfiltered, hot dirty, urban stormwater runoff from this building, or the adjacent buildings or any of the buildings that flow stormwater into Eagleville Brook.”

WRA-ORAL-6 Response: With respect to the quadrangle adjacent to the NESB and the surrounding area, opportunities for stormwater improvements will be evaluated as part of the master planning currently underway. Please see the response to comment M-8 for a more complete discussion.

WRA-ORAL-7 Comment: “And as I mentioned, the existing catch basins and yard drains are not up to snuff with current standards or with the TMDL Plan, the Watershed Management Plan or any other things.”

WRA-ORAL-7 Response: Please see the response to comment WRA-ORAL-1.

WRA-ORAL-8 Comment: “This building, and its site, is directly above, or within inches of the culverted brook. And measures put in place on this site will have more direct impact on improving the water quality of the brook since it’s so adjacent to the brook – directly adjacent to it that it needs to be planned now, and it cannot wait for the update of other plans.”

WRA-ORAL-8 Response: For clarification, the NESB is separated from a piped, underground segment of the brook by a passive grassed and walk lined quadrangle area; stormwater from the site does currently discharge to the brook, as discussed in the EIE.

Since the date of the EIE, the Design Team for the Project has continued their design and proposed additional conceptual LID/GI concepts for the NESB site: a green roof and porous
concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

WRA-ORAL-9 Comment: “So, we recommend that the stormwater plans for this section of the campus be expedited in order to go forward with this project. At a minimum we suggest raised and/or filtered catch basins to replace the existing infrastructure for the entire new Engineering and Science building site. If not, then this project should be put on hold until the campus plans are all completed, just like the other projects on campus. The appropriate stormwater and low impact development projects can then be planned and financed to accommodate this new building in the more distant future.”

WRA-ORAL-9 Response: With respect to the quadrangle adjacent to the NESB and the surrounding area, opportunities for stormwater improvements will be evaluated as part of the master planning currently underway; please see the response to comment M-8 for a more complete discussion. With respect to the existing infrastructure, please see the response to comment WRS-ORAL-1. With respect to the low impact development incorporated into the NESB design, please see the response to comment M-7...

WRA-ORAL-10 Comment: “The University has adopted a sustainable design and construction policy – LEED standards, and it’s seeking LEED certification for this building – and guidelines for sustainable design and low impact development goals, and these need to be fully applied to the stormwater runoff challenges of this building and its site and for the adjacent new pedestrian quadrangle and to retrofit the stormwater runoff from building surrounding the quadrangle which contribute to the degradation of water quality in Eagleville Brook and thus the Willimantic River.”

WRA-ORAL-10 Response: Please see the response to comment WRA-4.

Steven Squires (SS)
Oral Comments Provide at the Public Hearing on May 29, 2014

SS-1 Comment: “Those at least look like a beautiful campus atmosphere in the inner campus of the University. I don’t see it happening. I see every empty grass swatch being built upon. This University has the disease of a growth model called sustainability, and it’s a hoax.”

SS-1 Response: The NESB project is being built upon a site which already is developed with an existing building and will result in a reduction in impervious area on the site and an increase in the amount of green space within the Research Neighborhood portion of the campus. The proposed project will seek LEED certification, a benchmark measure of the University’s commitment to sustainability. Also, please see the response for WRA-4 relative to sustainability.
Connecticut Department of Public Health (DPH)
June 6, 2014

DPH-1 Comment: “As noted in the EIE, the timing of activation of the interconnection with the Connecticut Water Company (CWC) is critical to ensure an adequate supply of drinking water with a margin of safety during peak use periods. The DWS understands that CWC is currently on track to meet its schedule and is currently going through the environmental permitting process for numerous aspects of the interconnection. UCONN is encouraged to continue to coordinate with CWC on scheduling of the implementation of this interconnection.”

DPH-1 Response: As stated in the comment letter, the interconnection permitting is in process. The Permit Application Form for Inland Water Resources Division Activities for the transfer water from one water supply distribution system to another (e.g., the Diversion Permit) was submitted to DEEP in April 2014. The University will continue to coordinate with the CWC, the Town of Mansfield, and the appropriate agencies relative to the implementation schedule.

DPH-2 Comment: “UCONN should provide details of its efforts to date be able to use of Fenton Well D during low stream flow periods and the action items remaining. A schedule for achieving the action items and an estimate of the anticipated quantity of water that will be available under this scenario should be provided.”

DPH-2 Response: The University has initiated discussions with DEEP about the use of the Fenton Well D and will seek approval for use of Well D during low flow periods as outlined in the Water Supply Plan. The proposal to use Well D during periods of low streamflow, which will include provisions to monitor streamflow in the vicinity of Well D and will provide guidance for well production that guards against adverse impacts to the river, is expected to be submitted for DEEP approval in August 2014. The University will provide regular updates DPH regarding the proposed use of Well D. The University’s Water Supply Plan approved by DPH on March 25, 2014, estimates on the basis of modeling and field data that Well D can support up to 0.35 MGD. It is anticipated that the operating plan to be submitted to DEEP will dictate that initial pumping during low flow would have to incrementally increase up to 0.35 MGD.”
DPH-3 Comment: “The EIE indicates that UCONN may be able to meet maximum day demands by drawing "modestly" on its storage capacity. UCONN should quantify what is meant by "modestly" and indicate how this modest withdrawal will be replaced during low stream flow, high demand periods.”

DPH-3 Response: The new water demand attributable to the three new projects, the STEM Residence Hall, New Engineering Science Building and Innovative Partnership Building, is 53,400 gpd average day demand and 77,000 gpd peak day demand. The EIE references the possible need for withdrawals from the University’s 6.5 million gallons of storage to manage peak day demand. The average daily demand, if necessary, that is anticipated to be approximately 100,000 gpd on peak days, including 77,000 gpd to address new peak day demands created by the STEM Residence Hall, New Engineering Science Building and Innovative Partnership Building prior to the Connecticut Water Company connection being completed, and if the Fenton Wellfield is unavailable due to low streamflow conditions. Those storage tanks are replenished from wellfields consistent with the University’s Wellfield Management and Water Supply Plans.

DPH-4 Comment: “In the DWS scoping comments, it was requested that the EIE explore the feasibility of using reclaimed water from the Reclaimed Water Facility for non-potable uses. The EIE indicates that reclaimed water will be used for toilet flushing at the New Engineering and Science Building, the IPB and the STEM Residence Hall; however the feasibility remains to be quantified. The DWS is concerned that peak use of reclaimed water for the Central Utility Plant could coincide with low sanitary sewerage flows, limiting the amount waste water available for reclamation and distribution. UCONN should provide estimates that indicate that the anticipated reclaimed water demand in the New Engineering and Science Building, the IPB and the STEM Residence Hall can be met year-round and especially under the noted scenario.”

DPH-4 Response: The new Science Building will make use of reclaimed water for toilet flushing, the Innovation Partnership Building (IPB) will use reclaimed water for its cooling towers, and the STEM Residence Hall will use reclaimed water for both toilet flushing and its cooling towers. The Reclaimed Water Facility can produce up to 1 MGD, which DPH noted is dependent on sufficient Water Pollution Control Facility (WPCF) effluent being produced.

Based upon information collected over the period May 2013 – May 2014, reclaimed water flows and peak demand for cooling from the existing CUP and the proposed STEM Residence Hall, New Engineering Science Building, and Innovative Partnership Building, the greatest potential for shortfall would occur in the summer months. The greatest potential for shortfall would occur in the summer months. A very conservative estimate of the shortfall can be made by examining the low flow from the WPCF and using the peak reclaimed water usage which would assume maximum cooling in all the buildings connected to reclaimed water facility. For summer (June-August) 2014, the minimum WPCF flow was 532,000 gpd. Assuming 50% of that flow is available for reclaimed water, 266,000 gpd would be available for reclaimed water use. Assuming all buildings operating at a maximum usage for reclaimed water (~615,000 gpd), a potential shortfall of 349,000 gpd could occur.
This estimate is overly conservative in that peak building reclaimed water usage (cooling and toilet flushing) will not be occurring if buildings are not occupied and wastewater flows are not being generated, i.e., UConn will not be fully cooling unoccupied buildings. Note that the spring semester ends in early May and the Fall Semester begins the last week of August, so residence halls occupancy is substantially reduced during the June-August time period. However, there is the possibility for a more moderate shortfall; for example, assuming cooling at 25% of maximum capacity at the UConn buildings, the potential shortfall could more reasonably be on the order of 110,000 gpd.

Because such shortfalls were anticipated in the planning of the reclaimed water facility, the University has a 1 million gallon storage tank which is maintained for that reason and which can be drawn upon during times of need to meet demands. The storage tank is replenished when excess reclaimed water is available from the reclaimed water facility.

In addition, the University will continue to implement a program that aims at reducing its heating/cooling and electrical demands, especially during the summer/winter recess periods, including lowering/raising thermostats during periods of non-use on a campus-wide basis, a method which will be easier to introduce in newer and renovated buildings with more sophisticated control systems. Lastly, it should be noted the estimates provided are based on thirteen months’ worth of historic reclaimed water generation. As new buildings contribute flows to the Water Pollution Control Facility, the amount of available grey water increases up to the Water Reclamation Facility capacity of 1 MGD.
DEEP-1 Comment: “As discussed in the EIE, the site is mapped as a 100-year flood zone on the Flood Insurance Rate Map despite the undergrounding of Eagleville Brook sometime prior to 1951. The application for Flood Management Certification should include a demonstration that the underground 48” pipe has the capacity to convey the 100-year flood flow. In addition, groundwater is proposed to be directed away from the proposed building’s foundation and discharged to the stormwater system, which flows into the piped brook. The application should also demonstrate that the pipe has the capacity to convey this additional flow, which is judged to be nominal in the document, during the 100-year event.”

DEEP-1 Response: The most recent Flood Insurance Study (FIS) conducted by FEMA for the project area was completed in 1980. The FIS (FEMA, 1980) indicates that Eagleville Brook was studied by approximate methods only:

“The streams studied in detail were the Natchaug River from the downstream corporate limit to Hollow Dam; the Willimantic River from the downstream corporate limits, the limit of flooding affecting the community (a point about 6,350 feet downstream from Cider Mill Road) to the upstream corporate limits; Mouth Hope River from its mouth to the upstream corporate limit; and Conantville Brook from its downstream corporate limit to Pleasant Valley Road. Streams studied by approximate methods were the Fenton River, Fishers Brook, Eagleville Brook, Cedar Swamp Brook, Nelson Brook and Sawmill Brook.”

The FIS also states that “The hydrologic analyses were carried out for the approximate studies using the USGS Regional Analysis, using the parameters of the drainage basin, topographic maps and normal depth computations”. The most recent USGS topographic mapping available at the time of the study was dated 1970. This map shows the portion of Eagleville Brook which is now piped underground through a 48-inch diameter culvert before daylighting to the west of the Site, as discussed in the EIE, as a perennial stream.

The 1983 USGS topographic map, which was produced after the FEMA study, was also reviewed; one can see that the culverted portion of the stream is no longer evident as a surface watercourse on the newer USGS map. Several historic aerial photos were also reviewed for the campus. Interestingly, the photos indicate that this portion of the stream was culverted sometime between 1941 and 1951, but this was not reflected in the USGS mapping until 1983.

As such, the FEMA FIS does not accurately reflect current conditions on the site, nor does it accurately reflect conditions which were present on the site at the time the FIS was prepared.

Regardless, since a Letter of Map Amendment or Letter of Map Revision has not been approved to date for the site, a FMC will be prepared for the project. As requested, the FMC application for the project will include an analysis of the capacity of the 48-inch culvert to convey the 100-year flood event, as well as the nominal additional groundwater flow from the NESB foundations.
New Engineering & Science Building Record of Decision

Attachment C: Response to Comments
DEEP-2 Comment: “The Department suggests that reconsideration be given to including LID techniques as integral components of the building design, as opposed to subsequent retrofitting. As noted in our scoping comments, having construction equipment on-site for the building would, at a minimum, eliminate mobilization costs for installing LID measures. Incorporating LID techniques during project design would also allow a wider range of options to be considered. DEEP recommends reconsideration of the stormwater management system during final design of the NESB, to include review of a fuller suite of stormwater practices including infiltration, bioretention, evapo-transpiration, extended detention, and rainwater harvesting and reuse options. If the University demonstrates the inability to incorporate such suite of practices into this project, then this should be addressed in the University’s Master Planning EIE.”

DEEP-2 Response: Since the date of the EIE, the Design Team for the Project has continued their design and proposed three conceptual LID/GI concepts for the NESB site: a green roof and porous concrete/pavers for walkways. Please see the response to comment M-7 for a more complete discussion.

DEEP-3 Comment: “This EIE states the initial recommendation of a bioretention installation on a portion of this NESB site will be deferred until a new Master Plan EIE is completed. DEEP, as a member of the Eagleville Brook Watershed Team, recommends the University incorporate some practical LID design elements and stormwater management treatment during the construction phase of this project, and not defer such action until a later date.”

DEEP-3 Response: Please see responses to comments DEEP-2 and M-7 for details on LID/GI proposed for the NESB Project.

DEEP-4 Comment: “DEEP further recommends the University continue to report on Eagleville Brook Impervious Cover TMDL implementation activities, as an element of tracking changes in impervious surface areas and their connections to the Eagleville Brook drainage system, through the CLEAR program.”

DEEP-4 Response: The University will continue to report to DEEP on TMDL implementation activities. NEMO/CLEAR assessments will continue to be forwarded to DEEP and the University will continue to participate in regular meetings as part of the Eagleville Brook Watershed Committee with NEMO and DEEP, where implementation activities are communicated to DEEP’s watershed coordinator.

DEEP-5 Comment: “The EIE states that the additional laboratory wastewater streams will be managed in accordance with existing University protocols, which include compliance the DEEP General Permit for Miscellaneous Discharges of Sewer Compatible Wastewater (MISC). If the flow of wastewater from the laboratories is less than 1,000 gpd, the facility
would not have to be registered under the MISC General Permit. Registration will be required if the flow equals or is greater than 1,000 gpd.”

DEEP-5 Response: Total wastewater flow from the laboratories is expected to be approximately 2,500 gpd, necessitating that NESB be registered for the MISC General Permit prior to initiating discharge from the labs.

DEEP-6 Comment: “In discussing mitigation of air quality impacts, the document lists retrofitting non-road construction equipment, complying with existing regulations regarding exhaust and the idling regulation. As noted in our scoping comments, the Department typically encourages the use of newer off-road construction equipment that meets the latest EPA or California Air Resources Board (CARB) standards. If that newer equipment cannot be used, equipment with the best available controls on diesel emissions including retrofitting with diesel oxidation catalysts or particulate filters in addition to the use of ultra-low sulfur fuel would be the second choice that can be effective in reducing exhaust emissions. The use of newer equipment that meets EPA standards would obviate the need for retrofits.

The Department also encourages the use of newer on-road vehicles that meet either the latest EPA or California Air Resources Board (CARB) standards for construction projects. These on-road vehicles include dump trucks, fuel delivery trucks and other vehicles typically found at construction sites. On-road vehicles older than the 2007-model year typically should be retrofitted with diesel oxidation catalysts or diesel particulate filters for projects. Again, the use of newer vehicles that meet EPA standards would eliminate the need for retrofits.”

DEEP-6 Response: The University’s “Environmental, Health, and Safety Requirements for Construction, Service, and Maintenance Contractors” summarizes contractor air pollution control requirements for construction vehicles/equipment for University construction projects. This document is referenced in University contract documents. An authorized contractor representative must sign-off on this document, serving as an acknowledgement and understanding of the requirements of this document. Specific air pollution control requirements include but are not limited to:

- Fuel slips for construction vehicles/equipment that are refueled onsite must be retained,
- Low sulfur diesel or biofuels must be used,
- Vehicles shall not be operated near building fresh air intakes and shall be equipped with scrubbers to minimize impacts to indoor air quality,
- Idling time restrictions in accordance with CT laws, and
- Evaluation of solvents and use of noxious emissions during work planning process to determine control requirements prior to field implementation of the scope of work.
DEEP-7 Comment: “Additionally, Section 22a-174-18(b)(3)(C) of the RCSA limits the idling of mobile sources to 3 minutes. This regulation applies to most vehicles such as trucks and other diesel engine-powered vehicles commonly used on construction sites. Adhering to the regulation will reduce unnecessary idling at truck staging zones, delivery or truck dumping areas and further reduce on-road and construction equipment emissions. Use of posted signs indicating the three-minute idling limit is recommended. It should be noted that only DEEP can enforce Section 22a-174-18(b)(3)(C) of the RCSA. Therefore, it is recommended that the project sponsor include language similar to the anti-idling regulations in the contract specifications for construction in order to allow them to enforce idling restrictions at the project site without the involvement of the Department.”

DEEP-7 Response: As mentioned in the response to DEEP-6 above, the University’s “Environmental, Health, and Safety Requirements for Construction, Service, and Maintenance Contractors” includes air pollution control requirements including prohibiting idling for excessive periods when not in use.
ATTACHMENT D

Public Hearing Presentation
Public Hearing
Environmental Impact Evaluation
New Engineering & Science Building
University of Connecticut

- Introduction – Jason Coite, P.E. - UConn
- Presentation – Stephen Lecco, A.I.C.P., C.E.P. - GZA
 - Project Purpose
 - CEPA Process
 - Project Description
 - Alternatives
 - Impact Evaluation
- Public Comments

May 29, 2014

Proposed Location

New Engineering & Science Building – CEPA Public Hearing
Project Purpose and Need

- To initiate the Next Generation Program which will guide the University over the next decade
- To expand UConn’s Science Technology, Engineering and Mathematics (STEM) Program
 - Drive innovation
 - Create jobs
 - Spark economic growth
- To attract new faculty and students
- To provide for much needed laboratory space

What is CEPA?

- Connecticut Environmental Policy Act
- Section 22a-1 through 22a-1h of CGS
- State Agency Actions of Certain Size/Potential Impact Require Compliance with CEPA
- State and Federal Agency Involvement
- Public Involvement Process
CEPA Process

State Action Triggers CEPA Threshold(s)

Public Scoping

Public Scoping Meeting
March 17, 2014

Identification of Issues

Alternatives Analysis
Evaluation of Impacts

EIE

Comment Period
Jan. 21 – Mar. 22, 2014

Record of Decision
Submitted to OPM

Public Hearing
May 29, 2014

Agency/Public Review
and Comment
April 22 - June 6, 2014

* http://www.ct.gov/ceq

Environmental Elements of CEPA

Physical
- Noise, Light & Shadow
- Traffic, Parking & Circulation
- Public Utilities
- Potable Water Supply
- Stormwater Drainage
- Electricity, Heat, Telecommunications
- Aesthetics
- Cultural Resources

Natural
- Air Quality
- Geology, Topography & Soils
 - Surface Water
 - Groundwater
 - Floodplains
 - Wetlands
 - Fisheries
 - Protected Species

Socioeconomic
- Land Use & Zoning
- State, Local & Campus Master Planning
- Public Health & Safety
- Economy, Employment & Income
- Housing
- Consistency with State C&D Plan
- Environmental Justice
Summary of Proposed Action

• 5-Story Structure
• 118,000± GSF
• 182 New Students
• 11 New Faculty/Staff
• Labs & Offices
• LEED Silver Design (at a minimum)
• Demolition of Old Central Warehouse (2014)

Existing Conditions
Existing Conditions

Looking east at Chemistry Building and Old Central Warehouse
Looking west toward Pharmacy/Biology Building and Central Utility Plant

Site Features

- Project Area: 2.1 ac
- 1.5 ac impervious (70%)
- Fill, alluvium and glacial till
- Groundwater 11-24 ft
- Underground utilities
- Piped Eagleville Brook
Concept Plan

Source: Dirtworks and Mitchell Giurgola

Oblique Rendering
Alternatives

Alternatives Comparison

- New Building Between Bronwell and E2
 - No significant difference in reduction of Impervious Cover between Preferred Alternative and Bronwell/E2
 - Bronwell/E2 would require demolition of two wings of the E2 building
 - Bronwell/E2 building would be 8-stories, significant shadow impacts and incongruous with aesthetic of Research Neighborhood

- No Action
 - Does not meet the project goal of improving and expanding the STEM program at the University
Preliminary Impact Summary

<table>
<thead>
<tr>
<th>Element</th>
<th>Significant Negative Impact?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic</td>
<td>No</td>
<td>1-3% increase in traffic at major intersections</td>
</tr>
<tr>
<td>Air Quality</td>
<td>No</td>
<td>Tie in to existing CUP; replace emergency generator for Health Services Building</td>
</tr>
<tr>
<td>Water Quality</td>
<td>No</td>
<td>No major pollutant sources; overall reduction in impervious cover</td>
</tr>
<tr>
<td>Water Supply</td>
<td>No</td>
<td>CWC connection likely before building operational. Minimal demand – 920 GPD potable and 680 GPD non-potable reclaimed water.</td>
</tr>
<tr>
<td>Protected Species</td>
<td>No</td>
<td>None known to exist/use site</td>
</tr>
<tr>
<td>Wetlands</td>
<td>No</td>
<td>None on site</td>
</tr>
<tr>
<td>Floodplains</td>
<td>No</td>
<td>No active floodplain on site but Flood Management Certification required</td>
</tr>
</tbody>
</table>
Preliminary Impact Summary

<table>
<thead>
<tr>
<th>Element</th>
<th>Negative Impact?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shadow</td>
<td>No</td>
<td>Shadow analysis shows minimal impact</td>
</tr>
<tr>
<td>Visual/Aesthetics</td>
<td>No</td>
<td>Consistent with current setting</td>
</tr>
<tr>
<td>Utilities</td>
<td>No</td>
<td>Utilities present on site</td>
</tr>
<tr>
<td>Noise</td>
<td>No</td>
<td>Consistent with educational setting</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>No</td>
<td>Positive economic benefits – job creation</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No</td>
<td>No historic or archaeological resources affected – confirmed by SHPO</td>
</tr>
<tr>
<td>Cumulative Impacts</td>
<td>Potentially</td>
<td>Will be addressed in Master Plan EIE</td>
</tr>
</tbody>
</table>

Water Supply

- **1,600 GPD** increase in total water demand as a result of the project

 - Non-Potable Water provided by Reclaimed Water Facility
 - CWC interconnection likely completed in time for NESB opening
 - Cumulative water demand already evaluated in Water Supply EIE
Eagleville Brook

- Preferred site within Eagleville Brook Watershed
- Not meeting water quality standards
- Wide array of pollutants causing impairment
- A Total Maximum Daily Load (TMDL) has been established
 - Impervious Cover
 - Bacteria
- Goal of TMDL to improve water quality and habitat
 - Reduction/Minimization of Impervious Cover Where Feasible – 59% goal
 - Stormwater BMPs

New Engineering & Science Building – CEPA Public Hearing

Eagleville Brook Impacts

- Net decrease of 3,000 SF of Impervious Cover
- Consistent with goals of TMDL
- Lawn, gardens, tree plantings
- Collect groundwater at Site and convey to piped portion of Eagleville Brook
- Slight increase in base flow to Brook
- Cumulative impacts to be addressed in Master Plan EIE

New Engineering & Science Building – CEPA Public Hearing
Comments

• Comments received until June 6, 2014
• Send comments to:

 Jason Coite, Environmental Compliance Manager
 University of Connecticut
 Office of Environmental Policy
 31 LeDoyt Road, Unit 3055
 Storrs, CT 06269-3055
 fax: 860-486-5477
 email: jason.coite@uconn.edu